A comparative study of analytical thermal models to predict the orthogonal cutting temperature of AISI 1045 steel

2019 ◽  
Vol 102 (9-12) ◽  
pp. 3109-3119 ◽  
Author(s):  
Jinqiang Ning ◽  
Steven Y. Liang
Author(s):  
Hongtao Ding ◽  
Yung C. Shin

Materials often behave in a complicated manner involving deeply coupled effects among stress/stain, temperature, and microstructure during a machining process. This paper is concerned with prediction of the phase change effect on orthogonal cutting of American Iron and Steel Institute (AISI) 1045 steel based on a true metallo-thermomechanical coupled analysis. A metallo-thermomechanical coupled material model is developed and a finite element model (FEM) is used to solve the evolution of phase constituents, cutting temperature, chip morphology, and cutting force simultaneously using abaqus. The model validity is assessed using the experimental data for orthogonal cutting of AISI 1045 steel under various conditions, with cutting speeds ranging from 198 to 879 m/min, feeds from 0.1 to 0.3 mm, and tool rake angles from −7 deg to 5 deg. A good agreement is achieved in chip formation, cutting force, and cutting temperature between the model predictions and the experimental data.


Author(s):  
Hongtao Ding ◽  
Yung C. Shin

Materials often behave in a complicated manner involving deeply coupled effects among stress/stain, temperature and microstructure during a machining process. This paper is concerned with prediction of the phase change effect on orthogonal cutting of AISI 1045 steel based on a true metallo-thermo-mechanical coupled analysis. A metallo-thermo-mechanical coupled material model is developed, and a finite element model is used to solve the evolution of phase constituents, cutting temperature, chip morphology, and cutting force simultaneously using ABAQUS. The model validity is assessed using the experimental data for orthogonal cutting of AISI 1045 steel under various conditions, with cutting speeds ranging from 198 to 879 m/min, feeds from 0.1 to 0.3 mm, and tool rake angles from −7° to 5°. A good agreement is achieved in chip formation, cutting force and cutting temperature between the model predictions and the experimental data.


2011 ◽  
Vol 223 ◽  
pp. 286-295 ◽  
Author(s):  
Cédric Courbon ◽  
Tarek Mabrouki ◽  
Joël Rech ◽  
Denis Mazuyer ◽  
Enrico D'Eramo

The present work proposes to enhance the thermal interface denition in Finite Element (FE) simulations of machining. A user subroutine has been developed in Abaqus/Explicit © to implement a new experimentally-based heat partition model extracted from tribological tests. A 2D Arbitrary-Lagragian-Eulerian (ALE) approach is employed to simulate dry orthogonal cutting of AISI 1045 steel with coated carbide inserts. Simulation results are compared to experimental ones over a whole range of cutting speeds and feed rates in terms of average cutting forces, chip thickness, tool chip contact length and heat flux. This study emphasizes that heat transfer and temperature distribution in the cutting tool are drastically in uenced by the thermal formulation used at the interface. Consistency of the numerical results such as heat flux transmitted to the tool, peak temperature as well as hot spot location can be denitively improved.


2013 ◽  
Vol 589-590 ◽  
pp. 134-139
Author(s):  
Guo He Li ◽  
Yu Jun Cai ◽  
Hou Jun Qi

A method for building the constitutive relationship based on the J-C model and hardness is presented through considering the influence of hardness on the yield strength and the tensile strength. A constitutive relationship of hardened AISI 1045 is built by this method and the adiabatic shear critical cutting conditions of three kinds of hardness AISI 1045 steel are prediction through a model building by the linear pertubation analysis which considering the influence of compression stress of the primary shear zone, the cutting conditions and the constitutive relationship. For proving the prediction results, some orthogonal cutting experiments are performed to get the critical cutting conditions of adiabatic shear. The comparison shows that the prediction results are consistent with that of experiments.


2011 ◽  
Vol 383-390 ◽  
pp. 6741-6746
Author(s):  
Wan Masrurah Bt Hairudin ◽  
Mokhtar B. Awang

In this paper, thermo mechanical modelling of cutting process has been developed using a commercially available finite element analysis software, ABAQUS. A 2-D orthogonal cutting has been modelled using Arbitrary Lagrangian-Eulerian (ALE) formulation. The Johnson-Cook plasticity model has been assumed to describe the material behaviour during the process. This study is aimed at temperature and stresses distributions during machining of AISI 1045 steel with different rake angles; α=0° and α= -10°. The results showed that the maximum stress for 0° and -10° are 963MPa and 967MPa while the maximum temperature results shown that 771°C and 347°C.


2005 ◽  
Vol 128 (2) ◽  
pp. 445-453 ◽  
Author(s):  
Yiğit Karpat ◽  
Tuğrul Özel

In this paper, predictive modeling of cutting and ploughing forces, stress distributions on tool faces, and temperature distributions in the presence of tool flank wear are presented. The analytical and thermal modeling of orthogonal cutting that is introduced in Part I of the paper is extended for worn tool case in order to study the effect of flank wear on the predictions. Work material constitutive model based formulations of tool forces and stress distributions at tool rake and worn flank faces are utilized in calculating nonuniform heat intensities and heat partition ratios induced by shearing, tool-chip interface friction, and tool flank face-workpiece interface contacts. In order to model forces and stress distributions under the flank wear zone, a force model from Waldorf (1996) (“Shearing Ploughing, and Wear in Orthogonal Machining,” Ph.D. thesis, University of Illinois at Urbana-Champaign, IL) is adapted. Model is tested and validated for temperature and force predictions in machining of AISI 1045 steel and AL 6061-T6 aluminum.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1683
Author(s):  
Mohamadreza Afrasiabi ◽  
Jannis Saelzer ◽  
Sebastian Berger ◽  
Ivan Iovkov ◽  
Hagen Klippel ◽  
...  

Numerical simulation of metal cutting with rigorous experimental validation is a profitable approach that facilitates process optimization and better productivity. In this work, we apply the Smoothed Particle Hydrodynamics (SPH) and Finite Element Method (FEM) to simulate the chip formation process within a thermo-mechanically coupled framework. A series of cutting experiments on two widely-used workpiece materials, i.e., AISI 1045 steel and Ti6Al4V titanium alloy, is conducted for validation purposes. Furthermore, we present a novel technique to measure the rake face temperature without manipulating the chip flow within the experimental framework, which offers a new quality of the experimental validation of thermal loads in orthogonal metal cutting. All material parameters and friction coefficients are identified in-situ, proposing new values for temperature-dependent and velocity-dependent friction coefficients of AISI 1045 and Ti6Al4V under the cutting conditions. Simulation results show that the choice of friction coefficient has a higher impact on SPH forces than FEM. Average errors of force prediction for SPH and FEM were in the range of 33% and 23%, respectively. Except for the rake face temperature of Ti6Al4V, both SPH and FEM provide accurate predictions of thermal loads with 5–20% error.


Sign in / Sign up

Export Citation Format

Share Document