Bearing fault diagnostics using EEMD processing and convolutional neural network methods

2020 ◽  
Vol 107 (9-10) ◽  
pp. 4077-4095
Author(s):  
Iskander Imed Eddine Amarouayache ◽  
Mohamed Nacer Saadi ◽  
Noureddine Guersi ◽  
Nadir Boutasseta
2018 ◽  
Vol 10 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Rizqa Raaiqa Bintana ◽  
Chastine Fatichah ◽  
Diana Purwitasari

Community-based question answering (CQA) is formed to help people who search information that they need through a community. One condition that may occurs in CQA is when people cannot obtain the information that they need, thus they will post a new question. This condition can cause CQA archive increased because of duplicated questions. Therefore, it becomes important problems to find semantically similar questions from CQA archive towards a new question. In this study, we use convolutional neural network methods for semantic modeling of sentence to obtain words that they represent the content of documents and new question. The result for the process of finding the same question semantically to a new question (query) from the question-answer documents archive using the convolutional neural network method, obtained the mean average precision value is 0,422. Whereas by using vector space model, as a comparison, obtained mean average precision value is 0,282. Index Terms—community-based question answering, convolutional neural network, question retrieval


Author(s):  
Ilyoung Han ◽  
Jangbom Chai ◽  
Chanwoo Lim ◽  
Taeyun Kim

Abstract Convolutional Neural Network (CNN) is, in general, good at finding principal components of data. However, the characteristic components of the signals could often be obscured by system noise. Therefore, even though the CNN model is well-trained and predict with high accuracy, it may detect only the primary patterns of data which could be formed by system noise. They are, in fact, highly vulnerable to maintenance activities such as reassembly. In other words, CNN models could misdiagnose even with excellent performances. In this study, a novel method that combines the classification using CNN with the data preprocessing is proposed for bearing fault diagnosis. The proposed method is demonstrated by the following steps. First, training data is preprocessed so that the noise and the fault signature of the bearings are separated. Then, CNN models are developed and trained to learn significant features containing information of defects. Lastly, the CNN models are examined and validated whether they learn and extract the meaningful features or not.


Sign in / Sign up

Export Citation Format

Share Document