Rapid Establishment of Chemical and Mechanical Properties during Lamellar Bone Formation

2005 ◽  
Vol 77 (6) ◽  
pp. 386-394 ◽  
Author(s):  
B. Busa ◽  
L. M. Miller ◽  
C. T. Rubin ◽  
Y.-X. Qin ◽  
S. Judex
Angiology ◽  
2000 ◽  
Vol 51 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Steven Pauli ◽  
Patrick Lauwers ◽  
Jeroen Hendriks ◽  
Filip Van den Brande ◽  
John-Paul Bogers ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1257 ◽  
Author(s):  
Brian Wingender ◽  
Yongliang Ni ◽  
Yifan Zhang ◽  
Curtis Taylor ◽  
Laurie Gower

The hierarchical structure of bone and intrinsic material properties of its two primary constituents, carbonated apatite and fibrillar collagen, when being synergistically organized into an interpenetrating hard-soft composite, contribute to its excellent mechanical properties. Lamellar bone is the predominant structural motif in mammalian hard tissues; therefore, we believe the fabrication of a collagen/apatite composite with a hierarchical structure that emulates bone, consisting of a dense lamellar microstructure and a mineralized collagen fibril nanostructure, is an important first step toward the goal of regenerative bone tissue engineering. In this work, we exploit the liquid crystalline properties of collagen to fabricate dense matrices that assemble with cholesteric organization. The matrices were crosslinked via carbodiimide chemistry to improve mechanical properties, and are subsequently mineralized via the polymer-induced liquid-precursor (PILP) process to promote intrafibrillar mineralization. Neither the crosslinking procedure nor the mineralization affected the cholesteric collagen microstructures; notably, there was a positive trend toward higher stiffness with increasing crosslink density when measured by cantilever-based atomic force microscopy (AFM) nanoindentation. In the dry state, the average moduli of moderately (X51; 4.8 ± 4.3 GPa) and highly (X76; 7.8 ± 6.7 GPa) crosslinked PILP-mineralized liquid crystalline collagen (LCC) scaffolds were higher than the average modulus of bovine bone (5.5 ± 5.6 GPa).


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e81399 ◽  
Author(s):  
Alayna E. Loiselle ◽  
Shane A. J. Lloyd ◽  
Emmanuel M. Paul ◽  
Gregory S. Lewis ◽  
Henry J. Donahue

2013 ◽  
Vol 10 (81) ◽  
pp. 20120953 ◽  
Author(s):  
Davide Carnelli ◽  
Pasquale Vena ◽  
Ming Dao ◽  
Christine Ortiz ◽  
Roberto Contro

Anisotropy is one of the most peculiar aspects of cortical bone mechanics; however, its anisotropic mechanical behaviour should be treated only with strict relationship to the length scale of investigation. In this study, we focus on quantifying the orientation and size dependence of the spatial mechanical modulation in individual secondary osteons of bovine cortical bone using nanoindentation. Tests were performed on the same osteonal structure in the axial (along the long bone axis) and transverse (normal to the long bone axis) directions along arrays going radially out from the Haversian canal at four different maximum depths on three secondary osteons. Results clearly show a periodic pattern of stiffness with spatial distance across the osteon. The effect of length scale on lamellar bone anisotropy and the critical length at which homogenization of the mechanical properties occurs were determined. Further, a laminate-composite-based analytical model was applied to the stiffness trends obtained at the highest spatial resolution to evaluate the elastic constants for a sub-layer of mineralized collagen fibrils within an osteonal lamella on the basis of the spatial arrangement of the fibrils. The hierarchical arrangement of lamellar bone is found to be a major determinant for modulation of mechanical properties and anisotropic mechanical behaviour of the tissue.


2009 ◽  
Vol 10 (3) ◽  
pp. 488-495 ◽  
Author(s):  
Clinton T. Rubin ◽  
Ted S. Gross ◽  
Kenneth J. McLeod ◽  
Steven D. Bain

2011 ◽  
Vol 23 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Silvia Scaglione ◽  
Vincenzo Guarino ◽  
Monica Sandri ◽  
Anna Tampieri ◽  
Luigi Ambrosio ◽  
...  

2014 ◽  
Vol 116 (4) ◽  
pp. 416-424 ◽  
Author(s):  
Ryan E. Tomlinson ◽  
Kooresh I. Shoghi ◽  
Matthew J. Silva

Despite the strong connection between angiogenesis and osteogenesis in skeletal repair conditions such as fracture and distraction osteogenesis, little is known about the vascular requirements for bone formation after repetitive mechanical loading. Here, established protocols of damaging (stress fracture) and nondamaging (physiological) forelimb loading in the adult rat were used to stimulate either woven or lamellar bone formation, respectively. Positron emission tomography was used to evaluate blood flow and fluoride kinetics at the site of bone formation. In the group that received damaging mechanical loading leading to woven bone formation (WBF),15O water (blood) flow rate was significantly increased on day 0 and remained elevated 14 days after loading, whereas18F fluoride uptake peaked 7 days after loading. In the group that received nondamaging mechanical loading leading to lamellar bone formation (LBF),15O water and18F fluoride flow rates in loaded limbs were not significantly different from nonloaded limbs at any time point. The early increase in blood flow rate after WBF loading was associated with local vasodilation. In addition, Nos2 expression in mast cells was increased in WBF-, but not LBF-, loaded limbs. The nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester was used to suppress NO generation, resulting in significant decreases in early blood flow rate and bone formation after WBF loading. These results demonstrate that NO-mediated vasodilation is a key feature of the normal response to stress fracture and precedes woven bone formation. Therefore, patients with impaired vascular function may heal stress fractures more slowly than expected.


2020 ◽  
Author(s):  
Jacklyn Whitehead ◽  
Katherine H. Griffin ◽  
Charlotte E. Vorwald ◽  
Marissa Gionet-Gonzales ◽  
Serena E. Cinque ◽  
...  

ABSTRACTMesenchymal stromal cells (MSCs) can promote tissue repair in regenerative medicine, and their therapeutic potential is further enhanced via spheroid formation. We demonstrated that intraspheroidal presentation of Bone Morphogenetic Protein-2 (BMP-2) on hydroxyapatite (HA) nanoparticles resulted in more spatially uniform MSC osteodifferentiation, providing a method to internally influence spheroid phenotype. Stress relaxation of hydrogels has emerged as a potent stimulus to enhance monodispersed MSC spreading and osteogenic differentiation, but the effect of hydrogel viscoelasticity on MSC spheroids has not been reported. Herein, we describe a materials-based approach to augment the osteogenic potential of entrapped MSC spheroids by leveraging the mechanical properties of alginate hydrogels. Compared to spheroids entrapped in covalently crosslinked, elastic alginate, calcium deposition of MSC spheroids was consistently increased in ionically crosslinked, viscoelastic alginate. We observed significant increases in calcium deposition by MSC spheroids loaded with BMP-2-HA in viscoelastic gels compared to soluble BMP-2, which was higher than all elastic alginate gels. Upon implantation in critically sized calvarial bone defects, we observed enhanced bone formation in all animals treated with viscoelastic hydrogels. Increases in bone formation were evident in viscoelastic gels, regardless of the mode of presentation of BMP-2 (i.e., soluble delivery or HA nanoparticles). These studies demonstrate that the dynamic mechanical properties of viscoelastic alginate are an effective strategy to enhance the therapeutic potential of MSC spheroids for bone formation and repair.


Sign in / Sign up

Export Citation Format

Share Document