scholarly journals Denominators of Eisenstein cohomology classes for GL2 over imaginary quadratic fields

2007 ◽  
Vol 125 (4) ◽  
pp. 427-470 ◽  
Author(s):  
Tobias Berger
2009 ◽  
Vol 145 (03) ◽  
pp. 603-632 ◽  
Author(s):  
Tobias Berger

AbstractFor certain algebraic Hecke charactersχof an imaginary quadratic fieldFwe define an Eisenstein ideal in ap-adic Hecke algebra acting on cuspidal automorphic forms of GL2/F. By finding congruences between Eisenstein cohomology classes (in the sense of G. Harder) and cuspidal classes we prove a lower bound for the index of the Eisenstein ideal in the Hecke algebra in terms of the specialL-valueL(0,χ). We further prove that its index is bounded from above by thep-valuation of the order of the Selmer group of thep-adic Galois character associated toχ−1. This uses the work of R. Tayloret al. on attaching Galois representations to cuspforms of GL2/F. Together these results imply a lower bound for the size of the Selmer group in terms ofL(0,χ), coinciding with the value given by the Bloch–Kato conjecture.


2021 ◽  
Vol 9 ◽  
Author(s):  
David Burns ◽  
Rob de Jeu ◽  
Herbert Gangl ◽  
Alexander D. Rahm ◽  
Dan Yasaki

Abstract We develop methods for constructing explicit generators, modulo torsion, of the $K_3$ -groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$ -space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite $K_3$ -group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for $ K_3 $ of any field, predict the precise power of $2$ that should occur in the Lichtenbaum conjecture at $ -1 $ and prove that this prediction is valid for all abelian number fields.


Sign in / Sign up

Export Citation Format

Share Document