Compositio Mathematica
Latest Publications


TOTAL DOCUMENTS

1607
(FIVE YEARS 278)

H-INDEX

32
(FIVE YEARS 4)

Published By London Mathematical Society

1570-5846, 0010-437x

2021 ◽  
Vol 157 (12) ◽  
pp. 2733-2746
Author(s):  
Jessica Fintzen

Let $F$ be a non-archimedean local field of residual characteristic $p \neq 2$ . Let $G$ be a (connected) reductive group over $F$ that splits over a tamely ramified field extension of $F$ . We revisit Yu's construction of smooth complex representations of $G(F)$ from a slightly different perspective and provide a proof that the resulting representations are supercuspidal. We also provide a counterexample to Proposition 14.1 and Theorem 14.2 in Yu [Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), 579–622], whose proofs relied on a typo in a reference.


2021 ◽  
Vol 157 (12) ◽  
pp. 2635-2656
Author(s):  
Philip Tosteson

Abstract Using the theory of ${\mathbf {FS}} {^\mathrm {op}}$ modules, we study the asymptotic behavior of the homology of ${\overline {\mathcal {M}}_{g,n}}$ , the Deligne–Mumford compactification of the moduli space of curves, for $n\gg 0$ . An ${\mathbf {FS}} {^\mathrm {op}}$ module is a contravariant functor from the category of finite sets and surjections to vector spaces. Via copies that glue on marked projective lines, we give the homology of ${\overline {\mathcal {M}}_{g,n}}$ the structure of an ${\mathbf {FS}} {^\mathrm {op}}$ module and bound its degree of generation. As a consequence, we prove that the generating function $\sum _{n} \dim (H_i({\overline {\mathcal {M}}_{g,n}})) t^n$ is rational, and its denominator has roots in the set $\{1, 1/2, \ldots, 1/p(g,i)\},$ where $p(g,i)$ is a polynomial of order $O(g^2 i^2)$ . We also obtain restrictions on the decomposition of the homology of ${\overline {\mathcal {M}}_{g,n}}$ into irreducible $\mathbf {S}_n$ representations.


2021 ◽  
Vol 157 (12) ◽  
pp. 2699-2732
Author(s):  
Justin Campbell ◽  
Gurbir Dhillon ◽  
Sam Raskin

In quantum geometric Langlands, the Satake equivalence plays a less prominent role than in the classical theory. Gaitsgory and Lurie proposed a conjectural substitute, later termed the fundamental local equivalence. With a few exceptions, we prove this conjecture and its extension to the affine flag variety by using what amount to Soergel module techniques.


2021 ◽  
Vol 157 (12) ◽  
pp. 2747-2748
Author(s):  
Ziyang Gao
Keyword(s):  

2021 ◽  
Vol 157 (12) ◽  
pp. 2657-2698
Author(s):  
Runlin Zhang

In the present article, we study the following problem. Let $\boldsymbol {G}$ be a linear algebraic group over $\mathbb {Q}$ , let $\Gamma$ be an arithmetic lattice, and let $\boldsymbol {H}$ be an observable $\mathbb {Q}$ -subgroup. There is a $H$ -invariant measure $\mu _H$ supported on the closed submanifold $H\Gamma /\Gamma$ . Given a sequence $(g_n)$ in $G$ , we study the limiting behavior of $(g_n)_*\mu _H$ under the weak- $*$ topology. In the non-divergent case, we give a rather complete classification. We further supplement this by giving a criterion of non-divergence and prove non-divergence for arbitrary sequence $(g_n)$ for certain large $\boldsymbol {H}$ . We also discuss some examples and applications of our result. This work can be viewed as a natural extension of the work of Eskin–Mozes–Shah and Shapira–Zheng.


2021 ◽  
Vol 157 (12) ◽  
pp. 2585-2634
Author(s):  
Pratyush Sarkar ◽  
Dale Winter

The aim of this paper is to establish exponential mixing of frame flows for convex cocompact hyperbolic manifolds of arbitrary dimension with respect to the Bowen–Margulis–Sullivan measure. Some immediate applications include an asymptotic formula for matrix coefficients with an exponential error term as well as the exponential equidistribution of holonomy of closed geodesics. The main technical result is a spectral bound on transfer operators twisted by holonomy, which we obtain by building on Dolgopyat's method.


2021 ◽  
Vol 157 (11) ◽  
pp. 2494-2552
Author(s):  
Gus Lonergan

Abstract We observe a fundamental relationship between Steenrod operations and the Artin–Schreier morphism. We use Steenrod's construction, together with some new geometry related to the affine Grassmannian, to prove that the quantum Coulomb branch is a Frobenius-constant quantization. We also demonstrate the corresponding result for the $K$ -theoretic version of the quantum Coulomb branch. At the end of the paper, we investigate what our ideas produce on the categorical level. We find that they yield, after a little fiddling, a construction which corresponds, under the geometric Satake equivalence, to the Frobenius twist functor for representations of the Langlands dual group. We also describe the unfiddled answer, conditional on a conjectural ‘modular derived Satake’, and, though it is more complicated to state, it is in our opinion just as neat and even more compelling.


2021 ◽  
Vol 157 (11) ◽  
pp. 2433-2493
Author(s):  
Cedric Membrez ◽  
Emmanuel Opshtein

Abstract Our main result is the $\mathbb {\mathcal {C}}^{0}$ -rigidity of the area spectrum and the Maslov class of Lagrangian submanifolds. This relies on the existence of punctured pseudoholomorphic disks in cotangent bundles with boundary on the zero section, whose boundaries represent any integral homology class. We discuss further applications of these punctured disks in symplectic geometry.


Sign in / Sign up

Export Citation Format

Share Document