Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: a decision tree analysis

Author(s):  
David Dreizin ◽  
Tina Chen ◽  
Yuanyuan Liang ◽  
Yuyin Zhou ◽  
Fabio Paes ◽  
...  
Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1094
Author(s):  
Michael Wong ◽  
Nikolaos Thanatsis ◽  
Federica Nardelli ◽  
Tejal Amin ◽  
Davor Jurkovic

Background and aims: Postmenopausal endometrial polyps are commonly managed by surgical resection; however, expectant management may be considered for some women due to the presence of medical co-morbidities, failed hysteroscopies or patient’s preference. This study aimed to identify patient characteristics and ultrasound morphological features of polyps that could aid in the prediction of underlying pre-malignancy or malignancy in postmenopausal polyps. Methods: Women with consecutive postmenopausal polyps diagnosed on ultrasound and removed surgically were recruited between October 2015 to October 2018 prospectively. Polyps were defined on ultrasound as focal lesions with a regular outline, surrounded by normal endometrium. On Doppler examination, there was either a single feeder vessel or no detectable vascularity. Polyps were classified histologically as benign (including hyperplasia without atypia), pre-malignant (atypical hyperplasia), or malignant. A Chi-squared automatic interaction detection (CHAID) decision tree analysis was performed with a range of demographic, clinical, and ultrasound variables as independent, and the presence of pre-malignancy or malignancy in polyps as dependent variables. A 10-fold cross-validation method was used to estimate the model’s misclassification risk. Results: There were 240 women included, 181 of whom presented with postmenopausal bleeding. Their median age was 60 (range of 45–94); 18/240 (7.5%) women were diagnosed with pre-malignant or malignant polyps. In our decision tree model, the polyp mean diameter (≤13 mm or >13 mm) on ultrasound was the most important predictor of pre-malignancy or malignancy. If the tree was allowed to grow, the patient’s body mass index (BMI) and cystic/solid appearance of the polyp classified women further into low-risk (≤5%), intermediate-risk (>5%–≤20%), or high-risk (>20%) groups. Conclusions: Our decision tree model may serve as a guide to counsel women on the benefits and risks of surgery for postmenopausal endometrial polyps. It may also assist clinicians in prioritizing women for surgery according to their risk of malignancy.


Sign in / Sign up

Export Citation Format

Share Document