Characterization of denitrification activity in zones of groundwater exfiltration within a riparian wetland ecosystem

2006 ◽  
Vol 43 (6) ◽  
pp. 691-698 ◽  
Author(s):  
G. W. McCarty ◽  
S. Mookherji ◽  
J. T. Angier
2010 ◽  
Vol 184 (1-3) ◽  
pp. 313-320 ◽  
Author(s):  
Eun-Hee Lee ◽  
Hyunjung Park ◽  
Kyung-Suk Cho

2004 ◽  
Vol 36 (4) ◽  
pp. 563-569 ◽  
Author(s):  
Ryan E. Casey ◽  
M.D. Taylor ◽  
Stephen J. Klaine

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2113
Author(s):  
Aikaterini Christopoulou ◽  
Anastasia Christopoulou ◽  
Nikolaos M. Fyllas ◽  
Panayiotis G. Dimitrakopoulos ◽  
Margarita Arianoutsou

Invasive alien plant species represent an important threat to various protected areas of the world, and this threat expected to be further enhanced due to climate change. This is also the case for the most important network of protected areas in Europe, the Natura 2000 network. In the current study we evaluated the distribution pattern of alien plant taxa across selected continental and insular Natura 2000 sites in Greece and their potential spread 15 years since first being recorded in the field. A total of seventy-three naturalized plant taxa were recorded in the 159 sites under study. At the site level and regardless of the habitat group, the ratio of invaded areas increased between the two monitoring campaigns. An increase in the ratio of invaded plots was also detected for all habitat groups, except for grassland and riparian—wetland habitats. Precipitation during the dry quarter of the year was the factor that mainly controlled the occurrence and spread of alien plant taxa regardless of the site and habitat group. It is reasonable to say that the characterization of an area as protected may not be sufficient without having implemented the proper practices for halting biological invasions.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Benyamin Lakitan ◽  
KARTIKA KARTIKA ◽  
SUSILAWATI SUSILAWATI ◽  
ANDI WIJAYA

Abstract. Lakitan B, Kartika, Susilawati, Wijaya A. 2021. Acclimating leaf celery plant (Apium graveolens) via bottom wet culture to increase its adaptability to the tropical riparian wetland ecosystem. Biodiversitas 22: 320-328. Bottom-wet culture was set up for acclimating leaf celery plant prior to cultivation at shallow water table conditions. The aim of this research was to evaluate adaptability of leaf celery plants to riparian wetland ecosystem. Leaf celery was selected as potential candidate since natural habitat of its wild relatives is marshlands. Shading at 0%, 20%, and 60% was applied to reduced tropical sunlight intensity. Results of this study indicated that soil moisture was significantly increased in plants exposed to 60% shading, but leaf SPAD value was not significantly affected. Leaf celery is a perennial vegetable that can be frequently harvested. Weekly harvesting was rewarded with optimum yield and good quality leaves, i.e. high SPAD value (45.73 to 51.89). Delaying harvest to 3 weeks increased total yield but 52.12% of the harvested leaves were non-marketable. Mother plant of leaf celery produced suckers, but number of suckers only moderately correlated with yield (R2 = 0.56). Plants exposed to 60% shading produced significantly less suckers (9.00) than those exposed to full sunlight (12.46) and 20% shading (12.88) Use of zero intercept linear regression model, with length of leaf midrib (LLM) x leaf wingspan (LWS) as predictor, resulted in a geometrically based and accurate leaf area estimation model (LA = 0.3431(LLM x LWS); R2 = 0.87) for compound leaves of leaf celery plant. In conclusion, the most crucial factor in optimizing quantity and quality of yield was weekly harvesting focusing on marketable-size leaves.


2001 ◽  
Vol 1 ◽  
pp. 223-229 ◽  
Author(s):  
C.L. Walthall ◽  
T.J. Gish ◽  
C.S.T. Daughtry ◽  
W.P. Dulaney ◽  
K.-J.S. Kung ◽  
...  

Fundamental watershed-scale processes governing chemical flux to neighboring ecosystems are so poorly understood that effective strategies for mitigating chemical contamination cannot be formulated. Characterization of evapotranspiration, surface runoff, plant uptake, subsurface preferential flow, behavior of the chemicals in neighboring ecosystems, and an understanding of how crop management practices influence these processes are needed. Adequate characterization of subsurface flow has been especially difficult because conventional sampling methods are ineffective for measuring preferential flow of water and solutes. A sampling strategy based on ground-penetrating radar (GPR) mapping of subsurface structures coupled with near real-time soil moisture data, surface topography, remotely sensed imagery, and a geographic information system (GIS) appears to offer a means of accurately identifying subsurface preferential flow pathways. Four small adjacent watersheds draining into a riparian wetland and first-order stream at the USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD are being studied with this protocol. The spatial location of some preferential flow pathways for chemicals exiting these agricultural watersheds to the neighboring ecosystems have been identified. Confirmation of the pathways is via examination of patterns in yield monitor data and remote sensing imagery.


2021 ◽  
Vol 319 ◽  
pp. 107561
Author(s):  
Yuqin Liang ◽  
Chuanfa Wu ◽  
Xiaomeng Wei ◽  
Yi Liu ◽  
Xiangbi Chen ◽  
...  

Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Sign in / Sign up

Export Citation Format

Share Document