scholarly journals Partitioning of Fe2O3 in peridotite partial melting experiments over a range of oxygen fugacities elucidates ferric iron systematics in mid-ocean ridge basalts and ferric iron content of the upper mantle

2021 ◽  
Vol 176 (9) ◽  
Author(s):  
Fred A. Davis ◽  
Elizabeth Cottrell

AbstractBasalts and peridotites from mid-ocean ridges record fO2 near the quartz-fayalite-magnetite buffer (QFM), but peridotite partial melting experiments have mostly been performed in graphite capsules (~ QFM-3), precluding evaluation of ferric iron’s behavior during basalt generation. We performed experiments at 1.5 GPa, 1350–1400 °C, and fO2 from about QFM-3 to QFM+3 to investigate the anhydrous partitioning behavior of Fe2O3 between silicate melts and coexisting peridotite mineral phases. We find spinel/melt partitioning of Fe2O3 ($${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{spl}/\mathrm{melt}}$$ D Fe 2 O 3 spl / melt ) increases as spinel Fe2O3 concentrations increase, independent of increases in fO2, and decreases with temperature, which is consistent with new and previous experiments at 0.1 MPa. We find $${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{opx}/\mathrm{melt}}$$ D Fe 2 O 3 opx / melt = 0.63 ± 0.10 and $${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{cpx}/\mathrm{melt}}$$ D Fe 2 O 3 cpx / melt = 0.78 ± 0.30. MORB Fe2O3 and Na2O concentrations are consistent with a modeled MORB source with Fe2O3 = 0.48 ± 0.03 wt% (Fe3+/ΣFe = 0.053 ± 0.003) at potential temperatures (TP) from 1320 to 1440 °C. The temperature-dependence of the $${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{spl}/\mathrm{melt}}$$ D Fe 2 O 3 spl / melt function alone allows ~ 40% of the variation in MORB compositions. If we allow $${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{opx}/\mathrm{melt}}$$ D Fe 2 O 3 opx / melt and $${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{opx}/\mathrm{melt}}$$ D Fe 2 O 3 opx / melt to also vary with temperature by tying them to spinel Fe2O3 through intermineral partitioning, then all the MORB data are within error of the model. Our model Fe2O3 concentration for the MORB source would require that the convecting mantle be more oxidized at a given depth than recorded by continental mantle xenoliths. Our result is supported by thermodynamic models of mantle with Fe3+/ΣFe = 0.03 that predict fO2 of ~ QFM-1 near the garnet-spinel transition, which is inconsistent with fO2 of MORB. Our results support previous suggestions that redox melting may occur between 200 and 250 km depth.

1988 ◽  
Vol 25 (8) ◽  
pp. 1199-1208 ◽  
Author(s):  
J. Tuzo Wilson

Until a little more than a century ago the land surface not only was the only part of the Earth accessible to humans but also was the only part for which geophysical and geochemical methods could then provide any details. Since then scientists have developed ways to study the ocean floors and some details of the interior of the Earth to ever greater depths. These discoveries have followed one another more and more rapidly, and now results have been obtained from all depths of the Earth.New methods have not contradicted or greatly disturbed either old methods or old results. Hence, it has been easy to overlook the great importance of these recent findings.Within about the last 5 years the new techniques have mapped the pattern of convection currents in the mantle and shown that these rise from great depths to the surface. Even though the results are still incomplete and are the subject of debate, enough is known to show that the convection currents take two quite different modes. One of these breaks the strong lithosphere; the other moves surface fragments and plates about.It is pointed out that if expanding mid-ocean ridges move continents and plates, geometrical considerations demand that the expanding ridges must themselves migrate. Hence, collisions between ridges and plates are likely to have occurred often during geological time.Twenty years ago it was shown that the effect of a "mid-ocean ridge in the mouth of the Gulf of Aden" was to enter and rift the continent. This paper points out some of the conditions under which such collisions occur and in particular shows that the angle of incidence between a ridge and a coastline has important consequences upon the result. Several past and present cases are used to illustrate that collisions at right angles tend to produce rifting; collisions at oblique angles appear to terminate in the lithosphere in coastal shears, creating displaced terrane, but in the mantle the upward flow may continue to uplift the lithosphere far inland and produce important surface effects; collisions between coasts and mid-ocean ridges parallel to them produce hot uplifts moving inland. For a time these upwellings push thrusts and folds ahead of them, but they appear to die down before reaching cratons.


2012 ◽  
Vol 150 (3) ◽  
pp. 497-508 ◽  
Author(s):  
GEORGE S.-K. MA ◽  
JOHN MALPAS ◽  
JIAN-FENG GAO ◽  
KUO-LUNG WANG ◽  
LIANG QI ◽  
...  

AbstractEarly–Middle Miocene intraplate basalts from the Aleppo Plateau, NW Syria have been analysed for their platinum-group elements (PGEs). They contain extremely low PGE abundances, comparable with most alkali basalts, such as those from Hawaii, and mid-ocean ridge basalts. The low abundances, together with high Pd/Ir, Pt/Ir, Ni/Ir, Cu/Pd, Y/Pt and Cu/Zr are consistent with sulphide fractionation, which likely occurred during partial melting and melt extraction within the mantle. Some of the basalts are too depleted in PGEs to be explained solely by partial melting of a primitive mantle-like source. Such ultra-low PGE abundances, however, are possible if the source contains some mafic lithologies. Many of the basalts also exhibit suprachondritic Pd/Pt ratios of up to an order of magnitude higher than primitive mantle and chondrite, an increase too high to be attributable to fractionation of spinel and silicate minerals alone. The elevated Pd/Pt, associated with a decrease in Pt but not Ir and Ru, are also inconsistent with removal of Pt-bearing PGE minerals or alloys, which should have concurrently lowered Pt, Ir and Ru. In contrast, melting of a metasomatized source comprising sulphides whose Pt and to a lesser extent Rh were selectively mobilized through interaction with silicate melts, may provide an explanation.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 465 ◽  
Author(s):  
Kai Sun ◽  
Tao Wu ◽  
Xuesong Liu ◽  
Xue-Gang Chen ◽  
Chun-Feng Li

Mid-ocean ridge basalts (MORB) in the South China Sea (SCS) record deep crust-mantle processes during seafloor spreading. We conducted a petrological and geochemical study on the MORBs obtained from the southwest sub-basin of the SCS at site U1433 and U1434 of the International Ocean Discovery Program (IODP) Expedition 349. Results show that MORBs at IODP site U1433 and U1434 are unaffected by seawater alteration, and all U1433 and the bulk of U1434 rocks belong to the sub-alkaline low-potassium tholeiitic basalt series. Samples collected from site U1433 and U1434 are enriched mid-ocean ridge basalts (E-MORBs), and the U1434 basalts are more enriched in incompatible elements than the U1433 samples. The SCS MORBs have mainly undergone the fractional crystallization of olivine, accompanied by the relatively weak fractional crystallization of plagioclase and clinopyroxene during magma evolution. The magma of both sites might be mainly produced by the high-degree partial melting of spinel peridotite at low pressures. The degree of partial melting at site U1434 was lower than at U1433, ascribed to the relatively lower spreading rate. The magmatic source of the southwest sub-basin basalts may be contaminated by lower continental crust and contributed by recycled oceanic crust component during the opening of the SCS.


2020 ◽  
Vol 117 (25) ◽  
pp. 13997-14004 ◽  
Author(s):  
Michael W. Broadley ◽  
Peter H. Barry ◽  
David V. Bekaert ◽  
David J. Byrne ◽  
Antonio Caracausi ◽  
...  

Identifying the origin of noble gases in Earth’s mantle can provide crucial constraints on the source and timing of volatile (C, N, H2O, noble gases, etc.) delivery to Earth. It remains unclear whether the early Earth was able to directly capture and retain volatiles throughout accretion or whether it accreted anhydrously and subsequently acquired volatiles through later additions of chondritic material. Here, we report high-precision noble gas isotopic data from volcanic gases emanating from, in and around, the Yellowstone caldera (Wyoming, United States). We show that the He and Ne isotopic and elemental signatures of the Yellowstone gas requires an input from an undegassed mantle plume. Coupled with the distinct ratio of129Xe to primordial Xe isotopes in Yellowstone compared with mid-ocean ridge basalt (MORB) samples, this confirms that the deep plume and shallow MORB mantles have remained distinct from one another for the majority of Earth’s history. Krypton and xenon isotopes in the Yellowstone mantle plume are found to be chondritic in origin, similar to the MORB source mantle. This is in contrast with the origin of neon in the mantle, which exhibits an isotopic dichotomy between solar plume and chondritic MORB mantle sources. The co-occurrence of solar and chondritic noble gases in the deep mantle is thought to reflect the heterogeneous nature of Earth’s volatile accretion during the lifetime of the protosolar nebula. It notably implies that the Earth was able to retain its chondritic volatiles since its earliest stages of accretion, and not only through late additions.


Zootaxa ◽  
2008 ◽  
Vol 1866 (1) ◽  
pp. 136 ◽  
Author(s):  
DAPHNE E. LEE ◽  
MURRAY R. GREGORY ◽  
CARSTEN LÜTER ◽  
OLGA N. ZEZINA ◽  
JEFFREY H. ROBINSON ◽  
...  

Brachiopods form a small but significant component of the deep-sea benthos in all oceans. Almost half of the 40 brachiopod species so far described from depths greater than 2000 m are small, short-looped terebratulides assigned to two superfamilies, Terebratuloidea and Cancellothyridoidea. In this study we describe Melvicalathis, a new genus of cancellothyridoid brachiopod (Family Chlidonophoridae; Subfamily Eucalathinae) from ocean ridge localities in the south and southeast Pacific Ocean, and cryptic habitats within lava caves in glassy basalt dredged from the Southeast Indian Ridge, Indian Ocean. These small, punctate, strongly-ribbed, highly spiculate brachiopods occur at depths between 2009 m and 4900 m, and appear to be primary colonisers on the inhospitable volcanic rock substrate. The ecology and life-history of Melvicalathis and related deep-sea brachiopods are discussed. Brachiopods are rarely reported from the much-studied but localised hydrothermal vent faunas of the mid ocean ridge systems. They are, however, widespread members of a poorly known deep-sea benthos of attached, suspension-feeding epibionts that live along the rarely sampled basalt substrates associated with mid-ocean ridge systems. We suggest that these basalt rocks of the mid-ocean ridge system act as deep-sea “superhighways” for certain groups of deep-sea animals, including brachiopods, along which they may migrate and disperse. Although the mid-ocean ridges form the most extensive, continuous, essentially uniform habitat on Earth, their biogeographic significance may not have been fully appreciated.


1995 ◽  
Vol 32 (12) ◽  
pp. 2128-2146 ◽  
Author(s):  
Stephen J. Edwards

A detailed, integrated field, petrographic, and geochemical study of the Springers Hill area of the Bay of Islands ophiolite exposed in the Lewis Hills was undertaken to explain the anomalously high abundance of veins and dykes of chromitite, orthopyroxenite, and clinopyroxenite, and their associated dunites, hosted by a refractory harzburgite–dunite mixture. A geodynamic situation is presented, which is constrained by previous studies requiring formation of the Springers Hill mantle section at a ridge–fracture zone intersection, and the whole of the Bay of Islands ophiolite within a back-arc spreading environment. The veins and dykes formed during magmatism at the ridge–fracture zone intersection and along the fracture zone, as progressively hotter, more fertile (richer in clinopyroxene) asthenosphere ascended and was channelled up and along the fracture zone wall. Shallow melting of refractory harzburgite in the presence of subduction-derived hydrous fluids produced light rare earth element (LREE)-enriched boninitic magma from which crystallized chromitites, some of their associated dunites, and orthopyroxenites. This melting event dehydrated much of the mantle in and around the zone of partial melting. Continued rise and shallow partial melting of hotter, more fertile mantle under conditions of variable hydration generated LREE-depleted, low-Ti tholeiitic magma. This magma crystallized olivine clinopyroxenite, some associated dunite, and clinopyroxenite. The final magmatic event may have involved partial melting of mid-ocean-ridge basalt-bearing mantle at depth, ascent of the magma, and formation of massive wehrlite–lherzolite bodies at the ridge–fracture zone intersection and along the fracture zone. Ridge–fracture zone intersections in suprasubduction-zone environments are sites of boninitic and tholeiitic magmatism because refractory asthenospheric mantle may melt as it is channelled with subduction-derived fluids to shallow depths by the old, cold lithospheric wall of the fracture zone. Heat for melting is provided by the ascent of hotter, more fertile mantle. Extremely refractory magmas do not occur along "normal" oceanic fracture zones because volumes of highly refractory mantle are much less, subduction-derived hydrous fluids are not present, and fracture zone walls extend to shallower depths.


1977 ◽  
Vol 14 (4) ◽  
pp. 771-776 ◽  
Author(s):  
K. Muehlenbachs

The isotopic compositions of minerals separated from DSDP Leg 37 samples indicate that the primary, unaltered δ18O of both the intrusive and extrusive rocks are identical (~5.7 ‰, SMOW) to those of unaltered basalts dredged from mid-ocean ridges. All of the analyzed basalts (6 to 10 ‰) have been enriched in 18O due to weathering by cold seawater, whereas the intrusive rocks (2.4 and 5.0 ‰) are depleted of 18O probably as a result of exchange with hot seawater at the mid-ocean ridge. Both kinds of altered rock are also known from the study of dredged materials. 18O is preferentially removed from seawater by the first process, but is added to seawater by the second. Exchange of oxygen between oceanic crust and seawater must be considered in any discussion of the evolution of the isotopic composition of the oceans, because large volumes of rock are altered each year as the oceanic crust is formed.


2021 ◽  
Author(s):  
◽  
Christopher Edward Conway

<p>The Macquarie Ridge Complex (MRC) forms the submarine expression of the Australia‐Pacific plate boundary south of New Zealand, comprising a rugged bathymetry made up of numerous seamounts along its length. Tectonic plate reconstructions show that the plate boundary evolved from divergent to transpressional relative plate motion from ca. 40 – 6 Ma. However, only limited geological observation of the products of past seafloor spreading and present transpressional deformation has been achieved. This study presents new high-resolution multibeam, photographic, petrologic and geochemical data for 10 seamounts located along the MRC in order to elucidate the current nature and evolution of the plate boundary. Seamounts are oriented parallel to the plate boundary, characterized by elongate forms, and deformed by transform faulting. Three guyot‐type seamounts display summit plateaux that were formed by wave and current erosion. MRC seafloor is composed of alkaline to sub‐alkaline basaltic pillow, massive and sheet lava flows, lava talus, volcaniclastic breccia, diabase and gabbro. This oceanic crust was formed during effusive mid‐ocean ridge volcanism at the relic Macquarie spreading centre and has since been sheared, accreted and exhumed along the modern transpressional plate boundary. Major element systematics indicate samples originated from spatially distinct magmatic sources and have since been juxtaposed at seamounts due to transpressional relative plate motion. MRC seamounts have formed as discrete elevations as a result of dip‐slip and strike‐slip faulting of the ridge axis. Thus, MRC seamounts are volcanic in origin but are now the morphological manifestations of tectonic and geomorphic processes. Petrologic and geochemical characteristics of volcanic glass samples from the MRC indicate that both effusive and explosive eruption styles operated at the relic Macquarie spreading centre. Primitive and sub‐alkaline to transitional basaltic magma that rose efficiently to the seafloor was erupted effusively and cooled to form lava flows with low vesicle and phenocryst contents or was granulated on contact with seawater to form hyaloclasts deposited in volcaniclastic breccias. More alkaline magmas that underwent crystal fractionation and volatile exsolution in shallow reservoirs were fragmented and erupted during submarine hawaiian‐type eruptions. Such a scenario is likely to have occurred during the final stages of magmatism at the Australia‐Pacific plate boundary south of New Zealand when seafloor spreading was ultraslow or had ceased, which induced low degrees of partial melting and retarded magma ascent rates. All MRC samples display enriched mid‐ocean ridge basalt (E‐MORB) trace element characteristics. The sample suite can be divided into two groups, with Group 1 samples distinguished from Group 2 samples by their lower concentrations of highly incompatible trace elements, flatter LREE slopes, higher MgO contents and lower alkali element contents. Group 1 basalts were derived from low degree partial melting of spinel lherzolite generated during the late stages of mid‐ocean ridge volcanism at the plate boundary when seafloor spreading rates were slow to ultraslow (full spreading rate < 20 mm yr⁻¹). Group 2 basalts were derived from low degree partial melting of spinel lherzolite, mixed with small amounts of very low degree partial melting of garnet lherzolite, during post‐spreading volcanism at the MRC. Remnant heat from previous seafloor spreading induced buoyant ascent of the sub‐ridge mantle and enriched heterogeneities were preferentially tapped by the ensuing low melt fractions. Magma ascent was stalled due to the cessation of extension at the ridge and the melts underwent crystal fractionation prior to eruption, which accounts for the lower MgO contents of Group 2 basalts. The pervasive incompatible element‐enrichment of MRC basalts and similarity to lavas from fossil spreading ridges in the eastern Pacific Ocean may reflect regional enrichment of the Pacific upper mantle.</p>


Sign in / Sign up

Export Citation Format

Share Document