3D analysis of capillary network in skeletal muscle of obese insulin-resistant mice

2019 ◽  
Vol 152 (5) ◽  
pp. 323-331 ◽  
Author(s):  
Nejc Umek ◽  
Simon Horvat ◽  
Erika Cvetko ◽  
Marko Kreft ◽  
Jiří Janáček ◽  
...  
Diabetes ◽  
1992 ◽  
Vol 41 (4) ◽  
pp. 465-475 ◽  
Author(s):  
W. T. Garvey ◽  
L. Maianu ◽  
J. A. Hancock ◽  
A. M. Golichowski ◽  
A. Baron

Diabetes ◽  
1995 ◽  
Vol 44 (6) ◽  
pp. 695-698 ◽  
Author(s):  
J. L. Azevedo ◽  
J. O. Carey ◽  
W. J. Pories ◽  
P. G. Morris ◽  
G. L. Dohm

2017 ◽  
Vol 373 (1738) ◽  
pp. 20160529 ◽  
Author(s):  
Ashley E. Archer ◽  
Alex T. Von Schulze ◽  
Paige C. Geiger

Best known as chaperones, heat shock proteins (HSPs) also have roles in cell signalling and regulation of metabolism. Rodent studies demonstrate that heat treatment, transgenic overexpression and pharmacological induction of HSP72 prevent high-fat diet-induced glucose intolerance and skeletal muscle insulin resistance. Overexpression of skeletal muscle HSP72 in mice has been shown to increase endurance running capacity nearly twofold and increase mitochondrial content by 50%. A positive correlation between HSP72 mRNA expression and mitochondrial enzyme activity has been observed in human skeletal muscle, and HSP72 expression is markedly decreased in skeletal muscle of insulin resistant and type 2 diabetic patients. In addition, decreased levels of HSP72 correlate with insulin resistance and non-alcoholic fatty liver disease progression in livers from obese patients. These data suggest the targeted induction of HSPs could be a therapeutic approach for preventing metabolic disease by maintaining the body's natural stress response. Exercise elicits a number of metabolic adaptations and is a powerful tool in the prevention and treatment of insulin resistance. Exercise training is also a stimulus for increased HSP expression. Although the underlying mechanism(s) for exercise-induced HSP expression are currently unknown, the HSP response may be critical for the beneficial metabolic effects of exercise. Exercise-induced extracellular HSP release may also contribute to metabolic homeostasis by actively restoring HSP72 content in insulin resistant tissues containing low endogenous levels of HSPs. This article is part of the theme issue ‘Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective’.


2012 ◽  
Vol 19 (8) ◽  
pp. 729-738 ◽  
Author(s):  
Catherine R. Mikus ◽  
Bruno T. Roseguini ◽  
Grace M. Uptergrove ◽  
E. Matthew Morris ◽  
Randy Scott Rector ◽  
...  

Diabetes ◽  
1990 ◽  
Vol 39 (2) ◽  
pp. 157-167 ◽  
Author(s):  
H. Yki-Jarvinen ◽  
K. Sahlin ◽  
J. M. Ren ◽  
V. A. Koivisto

2003 ◽  
Vol 285 (1) ◽  
pp. E98-E105 ◽  
Author(s):  
Erik J. Henriksen ◽  
Mary K. Teachey ◽  
Zachary C. Taylor ◽  
Stephan Jacob ◽  
Arne Ptock ◽  
...  

The fatty acid-conjugated linoleic acid (CLA) enhances glucose tolerance and insulin action on skeletal muscle glucose transport in rodent models of insulin resistance. However, no study has directly compared the metabolic effects of the two primary CLA isomers, cis-9, trans-11-CLA (c9,t11-CLA) and trans-10, cis-12-CLA (t10,c12-CLA). Therefore, we assessed the effects of a 50:50 mixture of these two CLA isomers (M-CLA) and of preparations enriched in either c9,t11-CLA (76% enriched) or t10,c12-CLA (90% enriched) on glucose tolerance and insulin-stimulated glucose transport in skeletal muscle of the insulin-resistant obese Zucker ( fa/ fa) rat. Animals were treated daily by gavage with either vehicle (corn oil), M-CLA, c9,t11-CLA, or t10,c12-CLA (all CLA treatments at 1.5 g total CLA/kg body wt) for 21 consecutive days. During an oral glucose tolerance test, glucose responses were reduced ( P < 0.05) by 10 and 16%, respectively, in the M-CLA and t10,c12-CLA animals, respectively, whereas insulin responses were diminished by 21 and 19% in these same groups. There were no significant alterations in these responses in the c9,t11-CLA group. Insulin-mediated glucose transport activity was enhanced by M-CLA treatment in both type I soleus (32%) and type IIb epitrochlearis (58%) muscles and by 36 and 48%, respectively, with t10,c12-CLA. In the soleus, these increases were associated with decreases in protein carbonyls (index of oxidative stress, r = -0.616, P = 0.0038) and intramuscular triglycerides ( r = -0.631, P = 0.0028). Treatment with c9,t11-CLA was without effect on these variables. These results suggest that the ability of CLA treatment to improve glucose tolerance and insulin-stimulated glucose transport activity in insulin-resistant skeletal muscle of the obese Zucker rat are associated with a reduction in oxidative stress and muscle lipid levels and can be specifically ascribed to the actions of the t10,c12 isomer. In the obese Zucker rat, the c9,t11 isomer of CLA is metabolically neutral.


2017 ◽  
Vol 41 ◽  
pp. 514-525
Author(s):  
Ayşe Burcu ERTAN ◽  
Halime KENAR ◽  
Tahsin BEYZADEOĞLU ◽  
Fatma Neşe KÖK ◽  
Gamze TORUN KÖSE

Sign in / Sign up

Export Citation Format

Share Document