Parametric study of planar flexible deployable structures consisting of Scissor-like elements using a novel multibody dynamic analysis methodology

Author(s):  
Bo Li ◽  
Chaoqun Duan ◽  
Qian Peng ◽  
Sanmin Wang ◽  
U-Xuan Tan
Author(s):  
Jin-Fan Liu ◽  
Karim A. Abdel-Malek

Abstract A formulation of a graph problem for scheduling parallel computations of multibody dynamic analysis is presented. The complexity of scheduling parallel computations for a multibody dynamic analysis is studied. The problem of finding a shortest critical branch spanning tree is described and transformed to a minimum radius spanning tree, which is solved by an algorithm of polynomial complexity. The problems of shortest critical branch minimum weight spanning tree (SCBMWST) and the minimum weight shortest critical branch spanning tree (MWSCBST) are also presented. Both problems are shown to be NP-hard by proving that the bounded critical branch bounded weight spanning tree (BCBBWST) problem is NP-complete. It is also shown that the minimum computational cost spanning tree (MCCST) is at least as hard as SCBMWST or MWSCBST problems, hence itself an NP-hard problem. A heuristic approach to solving these problems is developed and implemented, and simulation results are discussed.


Author(s):  
Xiao Zhang ◽  
Rui Nie ◽  
Yan Chen ◽  
Baiyan He

Author(s):  
Sung-Soo Kim ◽  
Jeffrey S. Freeman

Abstract This paper details a constant stepsize, multirate integration scheme which has been proposed for multibody dynamic analysis. An Adams-Bashforth Moulton integration algorithm has been implemented, using the Nordsieck form to store internal integrator information, for multirate integration. A multibody system has been decomposed into several subsystems, treating inertia coupling effects of subsystem equations of motion as the inertia forces. To each subsystem, different rate Nordsieck form of Adams integrator has been applied to solve subsystem equations of motion. Higher order derivative information from the integrator provides approximation of inertia force computation in the decomposed subsystem equations of motion. To show the effectiveness of the scheme, simulations of a vehicle multibody system that consists of high frequency suspension motion and low frequency chassis motion have been carried out with different tire excitation forces. Efficiency of the proposed scheme has been also investigated.


1977 ◽  
Vol 99 (4) ◽  
pp. 859-866 ◽  
Author(s):  
P. V. Kasbekar ◽  
V. K. Garg ◽  
G. C. Martin

A dynamic analysis is presented to explain damage to railroad cars and ladings resulting from impacts. In the analysis, a mathematical model consisting of the car body and freight in the car is presented. Each freight element assumes three degrees of freedom for the computer simulation. A parametric study is made to establish sensitivity of car parameters and impact conditions. The study should be useful to aid in finding means for controlling impact damage and in designing packaging materials.


Sign in / Sign up

Export Citation Format

Share Document