flexible multibody
Recently Published Documents


TOTAL DOCUMENTS

737
(FIVE YEARS 107)

H-INDEX

37
(FIVE YEARS 5)

2021 ◽  
Vol 2 (4) ◽  
pp. 1009-1036
Author(s):  
Olivier Bauchau ◽  
Valentin Sonneville

This paper presents a finite element implementation of plates and shells for the analysis of flexible multibody systems. The developments are set within the framework of the motion formalism that (1) uses configuration and motion to describe the kinematics of flexible multibody systems, (2) couples their displacement and rotation components by recognizing that configuration and motion are members of the Special Euclidean group, and (3) resolves all tensors components in local frames. The formulation based on the motion formalism (1) provides a theoretical framework that streamlines the formulation of shell elements, (2) leads to governing equations of motion that are objective, intrinsic, and present a reduced order of nonlinearity, (3) improves the efficiency of the solution process, (4) circumvents the shear locking phenomenon that plagues shell formulations based on classical kinematic descriptions, and (5) prevents the occurrence of singularities in the treatment of finite rotation. Numerical examples are presented to illustrate the advantageous features of the proposed formulation.


2021 ◽  
Vol 11 (23) ◽  
pp. 11558
Author(s):  
Roberto Belotti ◽  
Ilaria Palomba ◽  
Erich Wehrle ◽  
Renato Vidoni

The use of flexible multibody simulation has increased significantly over recent years due to the increasingly lightweight nature of mechanical systems. The prominence of lightweight engineering design in mechanical systems is driven by the desire to require less energy in operation and to reach higher speeds. However, flexible lightweight systems are prone to vibration, which can affect reliability and overall system performance. Whether such issues are critical depends largely on the system eigenfrequencies, which should be correctly assigned by the proper choice of the inertial and elastic properties of the system. In this paper, an eigenfrequency assignment method for flexible multibody systems is proposed. This relies on a parametric modal model which is a Taylor expansion approximation of the eigenfrequencies in the neighborhood of a configuration of choice. Eigenfrequency assignment is recast as a quadratic programming problem which can be solved with low computational effort. The method is validated by assigning the lowest eigenfrequency of a two-bar linkage by properly adding point masses. The obtained results indicate that the proposed method can effectively assign the desired eigenfrequency.


Author(s):  
Olivier Bauchau ◽  
Valentin Sonneville

Abstract This paper describes a finite element approach to the analysis of flexible multibody systems. It is based on the motion formalism that (1) uses configuration and motion to describe the kinematics of flexible multibody systems, (2) recognizes that these are members of the Special Euclidean group thereby coupling their displacement and rotation components, and (3) resolves all tensors components in local frames. The goal of this review paper is not to provide an in-depth derivation of all the elements found in typical multibody codes but rather to demonstrate how the motion formalism (1) provides a theoretical framework that unifies the formulation of all structural elements, (2) leads to governing equations of motion that are objective, intrinsic, and present a reduced order of nonlinearity, (3) improves the efficiency of the solution process, and (4) prevents the occurrence of singularities.


Author(s):  
Tobias Rückwald ◽  
Alexander Held ◽  
Robert Seifried

AbstractUsually detailed impact simulations are based on isoparametric finite element models. For the inclusion in multibody dynamics simulation, e.g., in the framework of the floating frame of reference, a previous model reduction is necessary. A precise representation of the geometry is essential for modeling the dynamics of the impact. However, isoparametric finite elements involve the discretization of the geometry. This work tests isogeometric analysis (IGA) models as an alternative approach in the context of impact simulations in flexible multibody systems. Therefore, the adaption of the flexible multibody system procedure to include IGA models is detailed. The use of nonuniform rational basis splines (NURBS) allows the exact representation of the geometry. The degrees of freedom of the flexible body are afterwards reduced to save computation time in the multibody simulation. To capture precise deformations and stresses in the area of contact as well as elastodynamic effects, a large number of global shape functions is required. As test examples, the impact of an elastic sphere on a rigid surface and the impact of a long elastic rod are simulated and compared to reference solutions.


Sign in / Sign up

Export Citation Format

Share Document