ABA and GA4 dynamic modulates secondary dormancy and germination in Syngonanthus verticillatus seeds

Planta ◽  
2020 ◽  
Vol 251 (4) ◽  
Author(s):  
Leilane C. Barreto ◽  
Daniela M. D. Herken ◽  
Brenda M. R. Silva ◽  
Sergi Munné-Bosch ◽  
Queila S. Garcia
Keyword(s):  
1983 ◽  
Vol 6 (9) ◽  
pp. 731-738
Author(s):  
R. Rethy ◽  
A. Dedonder ◽  
H. Fredericq ◽  
J. De Greef

Weed Science ◽  
1993 ◽  
Vol 41 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Meiqin Qi ◽  
Mahesh K. Upadhyaya

To understand persistence strategies of meadow and western salsify, ecophysiological characteristics of their seed germination were studied. Anaerobiosis (immersion in deoxygenated water) induced secondary dormancy in seeds of both species. Dormancy could be induced in 86% of meadow salsify seeds and in 65% of western salsify seeds by a 1-d anaerobiosis treatment. The induced dormancy was gradually released during storage of air-dried secondary dormant meadow salsify seeds, and the rate of this release was influenced by storage temperature; 30 C was more effective than 10 or 20 C in releasing secondary dormancy. These results suggest that the two species may rely on induced dormancy as an option in their persistence strategy. The optimum temperature for germination of nondormant seeds of both species was 15 C. Maximum germination percentages for both species were established within 4 to 6 d of incubation at 15 C and within 14 to 28 d of incubation at 25 C. Nondormant seeds did not germinate below 10 or above 30 C. Stratification (at 5 C for 2 to 10 wk) stimulated germination of secondary dormant seeds of meadow salsify. This stratification requirement can be important in preventing germination of dormant salsify seeds in the fall, thereby avoiding high seedling mortality in the winter. Light (red and far-red) had no effect on germination of seeds in secondary dormancy. In a separate study, seeds of both species were planted in pots at depths of 2 to 14 cm and seedling emergence was observed. Maximum emergence occurred when seeds were buried 2 cm deep. Seeds planted 8 cm or deeper germinated but did not emerge.


Weed Science ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Frank Forcella ◽  
Robert G. Wilson ◽  
Jack Dekker ◽  
Robert J. Kremer ◽  
John Cardina ◽  
...  

Field experiments, conducted from 1991 to 1994, generated information on weed seedbank emergence for 22 site-years from Ohio to Colorado and Minnesota to Missouri. Early spring seedbank densities were estimated through direct extraction of viable seeds from soil cores. Emerged seedlings were recorded periodically, as were daily values for air and soil temperature, and precipitation. Percentages of weed seedbanks that emerged as seedlings were calculated from seedbank and seedling data for each species, and relationships between seedbank emergence and microclimatic variables were sought. Fifteen species were found in 3 or more site-years. Average emergence percentages (and coefficients of variation) of these species were as follows: giant foxtail, 31.2 (84%); velvetleaf, 28.2 (66); kochia, 25.7 (79); Pennsylvania smartweed, 25.1 (65); common purslane, 15.4 (135); common ragweed, 15.0 (110); green foxtail, 8.5 (72); wild proso millet, 6.6 (104); hairy nightshade, 5.2 (62); common sunflower, 5.0 (26); yellow foxtail, 3.4 (67); pigweed species, 3.3 (103); common lambsquarters, 2.7 (111); wild buckwheat, 2.5 (63), and prostrate knotweed, 0.6 (79). Variation among site-years, for some species, could be attributed to microclimate variables thought to induce secondary dormancy in spring. For example, total seasonal emergence percentage of giant foxtail was related positively to the 1st date at which average daily soil temperature at 5 to 10 cm soil depth reached 16 C. Thus, if soil warmed before mid April, secondary dormancy was induced and few seedlings emerged, whereas many seedlings emerged if soil remained cool until June.


2006 ◽  
Vol 16 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Joel Flores ◽  
Enrique Jurado ◽  
Alberto Arredondo

In the Chihuahuan Desert, there are many cacti species considered to be at risk due to illegal extraction, land-use change and overgrazing. To reduce their illegal extraction,ex situplant propagation has been suggested. However, the literature regarding seed germination biology of these species is scarce. We investigated the effect of light on germination percentages and germination rate (t50) in seeds of 28 cactus species from the Chihuahuan Desert. Seeds were incubated at a 14-h daily photoperiod (light) and in continuous darkness at 25°C for 30 d, after which seeds failing to germinate in darkness were transferred to light for 30 d. Only 11 of the species had non-dormant seeds, germinating ≥70% in the light; thus an evaluation of the effect of light versus darkness on germination was confined to them. All species were positively photoblastic, and all of them had seeds weighing <1 mg. Ten species did not germinate in darkness, and one species had only 7% germination. From these 11 species, 8 did not germinate to a significantly higher percentage when the same set of seeds was transferred from dark to light, suggesting that darkness had triggered secondary dormancy (skotodormancy). To our knowledge, these results are the first to show that darkness triggers secondary dormancy in cacti. Implications of having a light requirement for germination and having small seeds to accumulate a persistent soil seed bank are discussed. These results contribute to understanding the germination biology of cactus species at risk, and could enhance the propagation of large numbers of cultivated individuals outside their habitats, promotingex situconservation.


2020 ◽  
Vol 42 (2) ◽  
pp. 85
Author(s):  
Annemieke Ruttledge ◽  
Ralph D. B. Whalley ◽  
Gregory Falzon ◽  
David Backhouse ◽  
Brian M. Sindel

A large and persistent soil seed bank characterises many important grass weeds, including Nassella trichotoma (Nees) Hack. ex Arechav. (serrated tussock), a major weed in Australia and other countries. In the present study we examined the effects of constant and alternating temperatures in regulating primary and secondary dormancy and the creation and maintenance of its soil seed bank in northern NSW, Australia. One-month-old seeds were stored at 4, 25°C, 40/10°C and 40°C, in a laboratory, and germination tests were conducted every two weeks. Few seeds germinated following storage at 4°C, compared with seeds stored at 25°C, 40/10°C and 40°C. Nylon bags containing freshly harvested seeds were buried among N. trichotoma stands in early summer, and germination tests conducted following exhumation after each season over the next 12 months. Seeds buried over summer and summer plus autumn had higher germination than seeds buried over summer plus autumn plus winter, but germination increased again in the subsequent spring. Seeds stored for zero, three, six and 12 months at laboratory temperatures were placed on a thermogradient plate with 81 temperature combinations, followed by incubation at constant 25°C of un-germinated seeds. Constant high or low temperatures prolonged primary dormancy or induced secondary dormancy whereas alternating temperatures tended to break dormancy. Few temperature combinations resulted in more than 80% germination.


Sign in / Sign up

Export Citation Format

Share Document