Abstract
Herbicide-resistant weed management is one of the greatest agricultural challenges in crop production. Thus, the quick identification of resistant-herbicide weeds is extremely important for management. This study aimed to evaluate resistance to PSI-inhibitor herbicides (diquat) of Sumatran Fleabane [(Erigeron sumatrensis (Retz.) E.Walker)] and physiological response to paraquat application. The research was conducted with two E. sumatrensis biotypes, one susceptible and the other with multiple resistance to herbicides from five different modes of action (glyphosate, paraquat, diuron, saflufenacil, and 2,4-D). A dose-response assay was carried out to evaluate herbicide resistance to diquat in paraquat-resistant E. sumatrensis biotype. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), hydrogen peroxide (H2O2) content, and chlorophyll a fluorescence were measured in both biotypes after paraquat (400 g ai ha−1) application. The dose-response assay confirmed resistance of E. sumatrensis to diquat with resistance factor levels of 26-fold and 6-fold for LD50 and GR50 values, respectively, compared with the susceptible biotype. The accumulation of H2O2 occurred faster in the paraquat-susceptible biotype than in the resistant ones. Paraquat treatment caused an increase in SOD and APX activity in the susceptible biotype, but antioxidant enzyme activities were unaffected by paraquat in the resistant one at 5 hours after application (HAA). Chlorophyll a fluorescence increased along the first 4 HAA in both resistant and susceptible biotypes. However, at 24 HAA the resistant biotype showed a decline in fluorescence close to untreated plants while susceptible one died, which can be used to diagnose paraquat resistance at 24 HAA. There is confirmed resistance to diquat in a paraquat-resistant E. sumatrensis biotype. The paraquat-resistant biotype does not induce antioxidative enzymes, as a possible mechanism of resistance to paraquat, but shows a fast recovery of photosynthesis and continuous growth when subjected to paraquat, while the paraquat-susceptible biotype does not survive.