scholarly journals Ectopic transgene expression in the retina of four transgenic mouse lines

2015 ◽  
Vol 221 (7) ◽  
pp. 3729-3741 ◽  
Author(s):  
Robert Gábriel ◽  
Ferenc Erdélyi ◽  
Gábor Szabó ◽  
J. Josh Lawrence ◽  
Márta Wilhelm
2019 ◽  
Vol 116 (52) ◽  
pp. 27001-27010 ◽  
Author(s):  
Kyle B. Fischer ◽  
Hannah K. Collins ◽  
Edward M. Callaway

In combination with transgenic mouse lines expressing Cre or Flp recombinases in defined cell types, recombinase-dependent adeno-associated viruses (AAVs) have become the tool of choice for localized cell-type-targeted gene expression. Unfortunately, applications of this technique when expressing highly sensitive transgenes are impeded by off-target, or “leak” expression, from recombinase-dependent AAVs. We investigated this phenomenon and find that leak expression is mediated by both infrequent transcription from the inverted transgene in recombinant-dependent AAV designs and recombination events during bacterial AAV plasmid production. Recombination in bacteria is mediated by homology across the antiparallel recombinase-specific recognition sites present in recombinase-dependent designs. To address both of these issues we designed an AAV vector that uses mutant “cross-over insensitive” recognition sites combined with an “ATG-out” design. We show that these CIAO (cross-over insensitive ATG-out) vectors virtually eliminate leak expression. CIAO vectors provide reliable and targeted transgene expression and are extremely useful for recombinase-dependent expression of highly sensitive transgenes.


2004 ◽  
Vol 78 (7) ◽  
pp. 3621-3632 ◽  
Author(s):  
Mathias Rauer ◽  
Jürgen Götz ◽  
Daniel Schuppli ◽  
Peter Staeheli ◽  
Jürgen Hausmann

ABSTRACT The nucleoprotein (N) of Borna disease virus (BDV) is the major target of the disease-inducing antiviral CD8 T-cell response in the central nervous system of mice. We established two transgenic mouse lines which express BDV-N in either neurons (Neuro-N) or astrocytes (Astro-N). Despite strong transgene expression, neurological disease or gross behavioral abnormalities were not observed in these animals. When Neuro-N mice were infected as adults, replication of BDV was severely impaired and was restricted to brain areas with a low density of transgene-expressing cells. Notably, the virus failed to replicate in the transgene-expressing granular and pyramidal neurons of the hippocampus (which are usually the preferred host cells of BDV). When Neuro-N mice were infected within the first 5 days of life, replication of BDV was not suppressed in most neurons, presumably because the onset of transgene expression in the brain occurred after these cells became infected with BDV. Astro-N mice remained susceptible to BDV infection, but they were resistant to BDV-induced neurological disorder. Unlike their nontransgenic littermates, Neuro-N mice with persistent BDV infection did not develop neurological disease after immunization with a vaccinia virus vector expressing BDV-N. In contrast to the situation in wild-type mice, this treatment also failed to induce N-specific CD8 T cells in the spleens of both transgenic mouse lines. Thus, while resistance to BDV infection in N-expressing neurons appeared to result from untimely expression of a viral nucleocapsid component, the resistance to BDV-induced neuropathology probably resulted from immunological tolerance.


2006 ◽  
Vol 44 (01) ◽  
Author(s):  
E Ernst ◽  
K Schönig ◽  
H Bläker ◽  
W Stremmel ◽  
J Encke

Development ◽  
1991 ◽  
Vol 112 (3) ◽  
pp. 807-811 ◽  
Author(s):  
K. Schughart ◽  
C.J. Bieberich ◽  
R. Eid ◽  
F.H. Ruddle

To characterize cis-acting regulatory elements of the murine homeobox gene, Hox-2.2, transgenic mouse lines were generated that contained the LacZ reporter gene under the control of different fragments from the presumptive Hox-2.2 promoter. A promoter region of 3600 base pairs (bp) was identified, which reproducibly directed reporter gene expression into specific regions of developing mouse embryos. At 8.5 days postcoitum (p.c.) reporter gene activity was detected in posterior regions of the lateral mesoderm and, in subsequent developmental stages, expression of the LacZ gene was restricted to specific regions of the developing limb buds and the mesenchyme of the ventrolateral body region. This pattern of Hox-2.2-LacZ expression was found in all transgenic embryos that have been generated with the 3.6 kb promoter fragment (two founder embryos and embryos from five transgenic lines). In addition, embryos from two transgenic mouse lines expressed the reporter gene at low levels in the developing central nervous system (CNS). Our results are consistent with the idea that in addition to their presumptive role in CNS and vertebrae development, Hox-2.2 gene products are involved in controlling pattern formation in developing limbs.


2020 ◽  
Vol 14 ◽  
Author(s):  
Peter A. Groblewski ◽  
Douglas R. Ollerenshaw ◽  
Justin T. Kiggins ◽  
Marina E. Garrett ◽  
Chris Mochizuki ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhuohao He ◽  
Jennifer D. McBride ◽  
Hong Xu ◽  
Lakshmi Changolkar ◽  
Soo-jung Kim ◽  
...  

AbstractThe deposition of pathological tau is a common feature in several neurodegenerative tauopathies. Although equal ratios of tau isoforms with 3 (3R) and 4 (4R) microtubule-binding repeats are expressed in the adult human brain, the pathological tau from different tauopathies have distinct isoform compositions and cell type specificities. The underlying mechanisms of tauopathies are unknown, partially due to the lack of proper models. Here, we generate a new transgenic mouse line expressing equal ratios of 3R and 4R human tau isoforms (6hTau mice). Intracerebral injections of distinct human tauopathy brain-derived tau strains into 6hTau mice recapitulate the deposition of pathological tau with distinct tau isoform compositions and cell type specificities as in human tauopathies. Moreover, through in vivo propagation of these tau strains among different mouse lines, we demonstrate that the transmission of distinct tau strains is independent of strain isoform compositions, but instead intrinsic to unique pathological conformations.


2019 ◽  
Vol 33 (3) ◽  
pp. 426-434
Author(s):  
Zackie Aktary ◽  
Andre Corvelo ◽  
Camille Estrin ◽  
Lionel Larue
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document