Pulsed-UV light inactivation of Cryptosporidium parvum

2008 ◽  
Vol 102 (6) ◽  
pp. 1293-1299 ◽  
Author(s):  
Soo-Ung Lee ◽  
Migyo Joung ◽  
Dong-Jin Yang ◽  
Soon-Ho Park ◽  
Sun Huh ◽  
...  
2015 ◽  
Vol 78 (12) ◽  
pp. 2247-2252 ◽  
Author(s):  
L. LE GOFF ◽  
B. HUBERT ◽  
L. FAVENNEC ◽  
I. VILLENA ◽  
J. J. BALLET ◽  
...  

Cryptosporidium spp., a significant cause of foodborne infection, have been shown to be resistant to most chemical food disinfectant agents and infective for weeks in irrigation waters and stored fresh vegetal produce. Pulsed UV light (PL) has the potential to inactivate Cryptosporidium spp. on surfaces of raw or minimally processed foods or both. The present study aimed to evaluate the efficacy of PL on viability and in vivo infectivity of Cryptosporidium parvum oocysts present on raspberries, a known source of transmission to humans of oocyst-forming apicomplexan pathogens. The skin of each of 20 raspberries was experimentally inoculated with five 10-μl spots of an oocyst suspension containing 6 × 107 oocysts per ml (Nouzilly isolate). Raspberries were irradiated by PL flashes (4 J/cm2 of total fluence). This dose did not affect colorimetric or organoleptic characteristics of fruits. After immunomagnetic separation from raspberries, oocysts were bleached and administered orally to neonatal suckling mice. Seven days after infection, mice were euthanized, and the number of oocysts in the entire small intestine was individually assessed by immunofluorescence flow cytometry. Three of 12 and 12 of 12 inoculated mice that received 10 and 100 oocysts isolated from nonirradiated raspberries, respectively, were found infected. Four of 12 and 2 of 12 inoculated mice that received 103 and 104 oocysts from irradiated raspberries, respectively, were found infected. Oocyst counts were lower in animals inoculated with 103 and 104 oocysts from irradiated raspberries (92 ± 144 and 38 ± 82, respectively) than in animals infected with 100 oocysts from nonirradiated raspberries (35,785 ± 66,221, P = 0.008). PL irradiation achieved oocyst reductions of 2 and 3 log for an inoculum of 103 and 104 oocysts, respectively. The present pilot-scale evaluation suggests that PL is an effective mode of decontamination for raspberries and prompts further applicability studies in industrial contexts.


2006 ◽  
Vol 73 (3) ◽  
pp. 947-955 ◽  
Author(s):  
B. H. Al-Adhami ◽  
R. A. B. Nichols ◽  
J. R. Kusel ◽  
J. O'Grady ◽  
H. V. Smith

ABSTRACT To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ�cm−2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4′,6′-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ�cm−2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ�cm−2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ�cm−2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.


Sign in / Sign up

Export Citation Format

Share Document