<p><span>Street trees are more and more regarded as a potential measure to mitigate the excessive heat in urban areas resulting from climate change and the urban heat island. However, the current knowledge of the cooling effect of street trees relies on studies at the micro-scale while potential interactions at the city-scale are yet to be understood. In fact, the vast majority of large-scale modelling studies only represent street trees outside the street canyon, neglecting important effects such as the shading and sheltering.</span></p><p><span>In order to explicitly represent street trees in coupled urban climate simulation, the multi-layer urban canopy model BEP-Tree was coupled with the regional weather and climate model COSMO-CLM. The coupled model, named COSMO-BEP-Tree, enabled simulating the radiative, flow and energy interactions between street trees, canyon surfaces and the atmosphere during weather and climate simulations. </span></p><p><span>In this study, COSMO-BEP-Tree is used to model the cooling potential of street trees during a heatwave event in Basel, Switzerland. The impact of street trees is explored in terms of near-surface air temperature and thermal comfort. The impact of greening scenarios is simulated and compared with other heat mitigation strategies.</span></p><p><span>The results highlight contrasting urban climate effects of street trees during daytime and night-time, where different processes become dominant. The daytime cooling was primarily a local effect and proportional to the local density of street trees.&#160; In contrast, the impact was more widespread at night, where city-scale interactions become important. Beside air temperature, the model results suggest a significant impact of street trees on wind speed and canyon surface temperature. Owing to these effects, street trees produced a larger impact on thermal comfort than on air temperature. Finally, the need for further model development with respect to urban hydrology is outlined. </span></p>