scholarly journals A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering

2014 ◽  
Vol 27 (1) ◽  
pp. 131-142 ◽  
Author(s):  
Ayşegül Uçar ◽  
Yakup Demir ◽  
Cüneyt Güzeliş
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yusra Khalid Bhatti ◽  
Afshan Jamil ◽  
Nudrat Nida ◽  
Muhammad Haroon Yousaf ◽  
Serestina Viriri ◽  
...  

Classroom communication involves teacher’s behavior and student’s responses. Extensive research has been done on the analysis of student’s facial expressions, but the impact of instructor’s facial expressions is yet an unexplored area of research. Facial expression recognition has the potential to predict the impact of teacher’s emotions in a classroom environment. Intelligent assessment of instructor behavior during lecture delivery not only might improve the learning environment but also could save time and resources utilized in manual assessment strategies. To address the issue of manual assessment, we propose an instructor’s facial expression recognition approach within a classroom using a feedforward learning model. First, the face is detected from the acquired lecture videos and key frames are selected, discarding all the redundant frames for effective high-level feature extraction. Then, deep features are extracted using multiple convolution neural networks along with parameter tuning which are then fed to a classifier. For fast learning and good generalization of the algorithm, a regularized extreme learning machine (RELM) classifier is employed which classifies five different expressions of the instructor within the classroom. Experiments are conducted on a newly created instructor’s facial expression dataset in classroom environments plus three benchmark facial datasets, i.e., Cohn–Kanade, the Japanese Female Facial Expression (JAFFE) dataset, and the Facial Expression Recognition 2013 (FER2013) dataset. Furthermore, the proposed method is compared with state-of-the-art techniques, traditional classifiers, and convolutional neural models. Experimentation results indicate significant performance gain on parameters such as accuracy, F1-score, and recall.


Author(s):  
Zhen-Tao Liu ◽  
Si-Han Li ◽  
Wei-Hua Cao ◽  
Dan-Yun Li ◽  
Man Hao ◽  
...  

The efficiency of facial expression recognition (FER) is important for human-robot interaction. Detection of the facial region, extraction of discriminative facial expression features, and identification of categories of facial expressions are all related to the recognition accuracy and time-efficiency. An FER framework is proposed, in which 2D Gabor and local binary pattern (LBP) are combined to extract discriminative features of salient facial expression patches, and extreme learning machine (ELM) is adopted to identify facial expression categories. The combination of 2D Gabor and LBP can not only describe multiscale and multidirectional textural features, but also capture small local details. The FER of ELM and support vector machine (SVM) is performed using the Japanese female facial expression database and extended Cohn-Kanade database, respectively, in which both ELM and SVM achieve an accuracy of more than 85%, and the computational efficiency of ELM is higher than that of SVM. The proposed framework has been used in the multimodal emotional communication based humans-robots interaction system, in which FER within 2 seconds enables real-time human-robot interaction.


Sign in / Sign up

Export Citation Format

Share Document