Carboxy-terminally truncated Dengue 4 virus envelope glycoprotein expressed in Pichia pastoris induced neutralizing antibodies and resistance to Dengue 4 virus challenge in mice

2003 ◽  
Vol 148 (11) ◽  
pp. 2267-2273 ◽  
Author(s):  
M. Mun� ◽  
R. Rodr�guez ◽  
R. Ram�rez ◽  
Y. Soto ◽  
B. Sierra ◽  
...  
Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 688 ◽  
Author(s):  
Miguel Angel Muñoz-Alía ◽  
Stephen J. Russell

Measles virus (MeV) is monotypic. Live virus challenge provokes a broadly protective humoral immune response that neutralizes all known measles genotypes. The two surface glycoproteins, H and F, mediate virus attachment and entry, respectively, and neutralizing antibodies to H are considered the main correlate of protection. Herein, we made improvements to the MeV reverse genetics system and generated a panel of recombinant MeVs in which the globular head domain or stalk region of the H glycoprotein or the entire F protein, or both, were substituted with the corresponding protein domains from canine distemper virus (CDV), a closely related morbillivirus that resists neutralization by measles-immune sera. The viruses were tested for sensitivity to human or guinea pig neutralizing anti-MeV antisera and to ferret anti-CDV antisera. Virus neutralization was mediated by antibodies to both H and F proteins, with H being immunodominant in the case of MeV and F being so in the case of CDV. Additionally, the globular head domains of both MeV and CDV H proteins were immunodominant over their stalk regions. These data shed further light on the factors constraining the evolution of new morbillivirus serotypes.


2002 ◽  
Vol 76 (9) ◽  
pp. 4199-4211 ◽  
Author(s):  
Miriam I. Quiñones-Kochs ◽  
Linda Buonocore ◽  
John K. Rose

ABSTRACT The envelope (Env) glycoprotein of human immunodeficiency virus (HIV) contains 24 N-glycosylation sites covering much of the protein surface. It has been proposed that one role of these carbohydrates is to form a shield that protects the virus from immune recognition. Strong evidence for such a role for glycosylation has been reported for simian immunodeficiency virus (SIV) mutants lacking glycans in the V1 region of Env (J. N. Reitter, R. E. Means, and R. C. Desrosiers, Nat. Med. 4:679-684, 1998). Here we used recombinant vesicular stomatitis viruses (VSVs) expressing HIV Env glycosylation mutants to determine if removal of carbohydrates in the V1 and V2 domains affected protein function and the generation of neutralizing antibodies in mice. Mutations that eliminated one to six of the sites for N-linked glycosylation in the V1 and V2 loops were introduced into a gene encoding the HIV type 1 primary isolate 89.6 envelope glycoprotein with its cytoplasmic domain replaced by that of the VSV G glycoprotein. The membrane fusion activities of the mutant proteins were studied in a syncytium induction assay. The transport and processing of the mutant proteins were studied with recombinant VSVs expressing mutant Env G proteins. We found that HIV Env V1 and V2 glycosylation mutants were no better than wild-type envelope at inducing antibodies neutralizing wild-type Env, although an Env mutant lacking glycans appeared somewhat more sensitive to neutralization by antibodies raised to mutant or wild-type Env. These results indicate significant differences between SIV and HIV with regard to the roles of glycans in the V1 and V2 domains.


2020 ◽  
Author(s):  
Stephen Graham ◽  
Huy A. Tu ◽  
Benjamin D. McElvany ◽  
Nancy R. Graham ◽  
Ariadna Grinyo ◽  
...  

AbstractZika virus (ZIKV), a mosquito-transmitted flavivirus, caused a large epidemic in Latin America between 2015 and 2017. Effective ZIKV vaccines and treatments are urgently needed to prevent future epidemics and severe disease sequelae. People infected with ZIKV develop strongly neutralizing antibodies linked to viral clearance and durable protective immunity. To understand mechanisms of protective immunity and to support the development of ZIKV vaccines, here we characterize the properties of a strongly neutralizing antibody, B11F, isolated from a recovered ZIKV patient. Our results indicate that B11F targets a complex epitope on the virus that spans domains I and III of the envelope glycoprotein. While previous studies point to quaternary epitopes centered on domain II of ZIKV E glycoprotein as targets of strongly neutralizing and protective human antibodies, we uncover a new site spanning domain I and III as a target of strongly neutralizing human antibodies.ImportancePeople infected with Zika virus develop durable neutralizing antibodies that prevent repeat infections. In the current study, we characterize a ZIKV-neutralizing human monoclonal antibody isolated from a patient after recovery. Our studies establish a novel site on the viral envelope targeted by human neutralizing antibodies. Our results are relevant to understanding how antibodies block infection and for guiding the design and evaluation of candidate vaccines.


2020 ◽  
Vol 142 ◽  
pp. 104094
Author(s):  
M.A. Tizzano ◽  
G.H. Sguazza ◽  
L.D. Picotto ◽  
M.G. Echeverría ◽  
M.R. Pecoraro

2012 ◽  
Vol 58 (4) ◽  
pp. 369-380 ◽  
Author(s):  
Jie Yang ◽  
Junlei Zhang ◽  
Wei Chen ◽  
Zhen Hu ◽  
Junmin Zhu ◽  
...  

Dengue viruses (DENVs) are mosquito-borne infectious pathogens that pose a serious global public health threat, and at present, no therapy or effective vaccines are available. Choosing suitable units as candidates is fundamental for the development of a dengue subunit vaccine. Domain III of the DENV-2 E protein (EDIII) was chosen in the present study and expressed in Escherichia coli by N-terminal fusion to a bacterial leader (pelB), and C-terminal fusion with a 6×His tag based on the functions of DENV structure proteins, especially the neutralizing epitopes on the envelope E protein. After two-step purification using Ni–NTA affinity and cation-exchange chromatography, the His-tagged EDIII was purified up to 98% homogenicity. This recombinant EDIII was able to trigger high levels of neutralizing antibodies in both BALB/c and C57BL/6 mice. Both the recombinant EDIII and its murine antibodies protected Vero cells from DENV-2 infection. Interestingly, the recombinant EDIII provides at least partial cross-protection against DENV-1 infection. In addition, the EDIII antibodies were able to protect suckling mice from virus challenge in vivo. These data suggest that a candidate molecule based on the small EDIII protein, which has neutralizing epitopes conserved among all 4 DENV serotypes, has important implications.


1998 ◽  
Vol 72 (10) ◽  
pp. 8437-8445 ◽  
Author(s):  
Bijan Etemad-Moghadam ◽  
Gunilla B. Karlsson ◽  
Matilda Halloran ◽  
Ying Sun ◽  
Dominik Schenten ◽  
...  

ABSTRACT We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein epitopes recognized by neutralizing antibodies from monkeys recently infected by molecularly cloned simian-human immunodeficiency virus (SHIV) variants. The early neutralizing antibody response in each infected animal was directed mainly against a single epitope. This primary neutralizing epitope, however, differed among individual monkeys infected by identical viruses. Two such neutralization epitopes were determined by sequences in the V2 and V3 loops of the gp120 envelope glycoprotein, while a third neutralization epitope, apparently discontinuous, was determined by both V2 and V3 sequences. These results indicate that the early neutralizing antibody response in SHIV-infected monkeys is monospecific and directed against epitopes composed of the gp120 V2 and V3 variable loops.


Sign in / Sign up

Export Citation Format

Share Document