scholarly journals Recombinant Dengue Virus 4 Envelope Glycoprotein Virus-Like Particles Derived from Pichia pastoris are Capable of Eliciting Homotypic Domain III-Directed Neutralizing Antibodies

2016 ◽  
Vol 96 (1) ◽  
pp. 126-134 ◽  
Author(s):  
Niyati Khetarpal ◽  
Rahul Shukla ◽  
Ravi Kant Rajpoot ◽  
Ankur Poddar ◽  
Meena Pal ◽  
...  
2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Ankur Poddar ◽  
Viswanathan Ramasamy ◽  
Rahul Shukla ◽  
Ravi Kant Rajpoot ◽  
Upasana Arora ◽  
...  

2010 ◽  
Vol 167 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Gaurav Batra ◽  
Rajendra Raut ◽  
Satinder Dahiya ◽  
Neha Kamran ◽  
Sathyamangalam Swaminathan ◽  
...  

Virus Genes ◽  
2017 ◽  
Vol 54 (1) ◽  
pp. 25-32 ◽  
Author(s):  
J. Asnet Mary ◽  
Akanitt Jittmittraphap ◽  
Siriporn Chattanadee ◽  
Pornsawan Leaungwutiwong ◽  
R. Shenbagarathai

Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 307 ◽  
Author(s):  
César López-Camacho ◽  
Giuditta De Lorenzo ◽  
Jose Luis Slon-Campos ◽  
Stuart Dowall ◽  
Peter Abbink ◽  
...  

The flavivirus envelope protein domain III (EDIII) was an effective immunogen against dengue virus (DENV) and other related flaviviruses. Whether this can be applied to the Zika virus (ZIKV) vaccinology remains an open question. Here, we tested the efficacy of ZIKV-EDIII against ZIKV infection, using several vaccine platforms that present the antigen in various ways. We provide data demonstrating that mice vaccinated with a ZIKV-EDIII as DNA or protein-based vaccines failed to raise fully neutralizing antibodies and did not control viremia, following a ZIKV challenge, despite eliciting robust antibody responses. Furthermore, we showed that ZIKV-EDIII encoded in replication-deficient Chimpanzee adenovirus (ChAdOx1-EDIII) elicited anti-ZIKV envelope antibodies in vaccinated mice but also provided limited protection against ZIKV in two physiologically different mouse challenge models. Taken together, our data indicate that contrary to what was shown for other flaviviruses like the dengue virus, which has close similarities with ZIKV-EDIII, this antigen might not be a suitable vaccine candidate for the correct induction of protective immune responses against ZIKV.


2011 ◽  
Vol 19 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Lidong Liu ◽  
Kun Wen ◽  
Jie Li ◽  
Dongmei Hu ◽  
Yanfen Huang ◽  
...  

ABSTRACTThe plaque reduction neutralization test (PRNT) is used widely to measure the neutralization activity of anti-dengue virus (DENV) antibodies, but it is time-consuming and labor-intensive and has low sample throughput. For fast and convenient measurement of neutralizing antibodies, especially in evaluating the efficiency of the DENV vaccines on a large scale, a new method is needed to replace PRNT. In recent decades, several microneutralization assays have been developed to overcome the limitations of PRNT. In the present study, we evaluated one of these, the enzyme-linked immunospot microneutralization test (ELISPOT-MNT), in comparison with PRNT. ELISPOT-MNT is performed in 96-well format, and the plaques are developed after 2 to 4 days using an ELISA to transform them into spots, which are detected automatically with an ELISPOT instrument. The assay is faster than PRNT, has a high throughput, and is more objective. We used 10 monoclonal antibodies (MAbs) against domain III of the DENV envelope protein (EDIII) to evaluate the two assays; all of these MAbs cross-react with all four serotypes of DENV as measured by immunofluorescence assay. The two neutralization assays were performed simultaneously to measure the 50% inhibitory concentration (IC50) of these MAbs. Using PRNT as the reference and treating IC50values higher than 50 μg/ml of MAbs as negative, ELISPOT-MNT showed a sensitivity of 95.6% and specificity of 88.24% when 10 MAbs were tested against four DENV serotype strains. A good correlation (R2= 0.672;P= 0.000) was observed between the two assays, making ELISPOT-MNT a potentially valuable method for measure of neutralizing antibodies against DENV.


Sign in / Sign up

Export Citation Format

Share Document