scholarly journals Detection of different dynamics of two coupled oscillators including a time-dependent cubic nonlinearity

2022 ◽  
Author(s):  
A. Labetoulle ◽  
A. Ture Savadkoohi ◽  
E. Gourdon
2005 ◽  
Vol 127 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Chung Hwan Kim ◽  
Chong-Won Lee ◽  
N. C. Perkins

This study is motivated by the vibrations that plague coating processes used in the manufacturing of coated sheet metal. These vibrations arise from time-dependent tension fluctuations within the sheet metal plate as well as from the eccentricity of the rollers used to transport the plate. The time-dependent tension is observed to be rather broad-band and creates multi-frequency parametric excitation. By contrast, the roller eccentricity is largely single-frequency (synchronized with the roller speed) and creates single-frequency external excitation. The plate and excitation sources are studied herein using a single-degree-of-freedom model with a cubic nonlinearity, subject to combined parametric and external excitation. In our study, we investigate the resonances that arise from the synergistic effects of multi-frequency parametric excitation and single-frequency external excitation. For the simpler case of single-frequency parametric excitation, we observe both sum and difference combination resonances in addition to principal parametric resonance. For the case of multi-frequency parametric excitation, we observe a frequency shift for the parametric resonance that derives from the cubic nonlinearity and external excitation. Moreover, the phase relationships of the external and each parametric excitation source have a significant effect on the resulting response amplitude. We use these analyses to explain the resonance mechanisms observed in experiments conducted on an example sheet metal coating process.


2019 ◽  
Vol 1 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Alejandro R. Urzúa ◽  
Irán Ramos-Prieto ◽  
Manuel Fernández-Guasti ◽  
Héctor M. Moya-Cessa

We show that by using the quantum orthogonal functions invariant, we found a solution to coupled time-dependent harmonic oscillators where all the time-dependent frequencies are arbitrary. This system may be found in many applications such as nonlinear and quantum physics, biophysics, molecular chemistry, and cosmology. We solve the time-dependent coupled harmonic oscillators by transforming the Hamiltonian of the interaction using a set of unitary operators. In passing, we show that N time-dependent and coupled oscillators have a generalized orthogonal functions invariant from which we can write a Ermakov–Lewis invariant.


Author(s):  
Chung Hwan Kim ◽  
Chong-Won Lee ◽  
N. C. Perkins

This study in motivated by the vibrations that plague coating processes used in the manufacturing of coated sheet metal. These vibrations arise from time-dependent tension fluctuations within the sheet metal plate as well as from the eccentricity of the rollers used to transport the plate. The time-dependent tension is observed to be rather broad-band and creates multi-frequency parametric excitation. By contrast, the roller eccentricity is largely single-frequency (synchronized with the roller speed) and creates single-frequency external excitation. The plate and excitation sources are studied herein using a single-degree-of-freedom model with a cubic nonlinearity, subject to combined parametric and external excitation. In our study, we investigate the resonances that arise from the synergistic effects of multi-frequency parametric excitation and single-frequency external excitation. For the simpler case of single-frequency parametric excitation, we observe both sum and difference combination resonances in addition to principal parametric resonance. For the case of multi-frequency parametric excitation, we observe a frequency shift for the parametric resonance that derives from the cubic nonlinearity and external excitation. Moreover, the phase relationships of the external and each parametric excitation source have a significant effect on the resulting response amplitude. We use these analyses to explain the resonance mechanisms observed in experiments conducted on an example sheet metal coating process.


2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Chao Wang

AbstractIn this paper, we prove a new continuation theorem for the solvability of periodic boundary value problems for nonlinear vector equations. By applying the continuation theorem, we prove the existence of a periodic solution for a class of semi-linear weekly-coupled systems with time-dependent potential.


1990 ◽  
Vol 41 (7) ◽  
pp. 3775-3781 ◽  
Author(s):  
M. Sebawe Abdalla

2021 ◽  
Vol 3 (4) ◽  
pp. 684-702
Author(s):  
Radouan Hab-arrih ◽  
Ahmed Jellal ◽  
Dionisis Stefanatos ◽  
Abdeldjalil Merdaci

In this work, we investigate the Schrödinger dynamics of photon excitation numbers and entanglement in a system composed by two non-resonant time-dependent coupled oscillators. By considering π periodically pumped parameters (oscillator frequencies and coupling) and using suitable transformations, we show that the quantum dynamics can be determined by two classical Meissner oscillators. We then study analytically the stability of these differential equations and the dynamics of photon excitations and entanglement in the quantum system numerically. Our analysis shows two interesting results, which can be summarized as follows: (i) Classical instability of classical analog of quantum oscillators and photon excitation numbers (expectations Nj) are strongly correlated, and (ii) photon excitations and entanglement are connected to each other. These results can be used to shed light on the link between quantum systems and their classical counterparts and provide a nice complement to the existing works studying the dynamics of coupled quantum oscillators.


2002 ◽  
Vol 16 (19) ◽  
pp. 2837-2855 ◽  
Author(s):  
M. SEBAWE ABDALLA

In this paper we consider the most quadratic time dependent Hamiltonian. An exact solution of the wave function in both the Schrödinger picture and coherent states representation is given. Linear and quadratic invariants are discussed. The eigenvalues and the corresponding eigenfunctions are obtained. The expectation values for the energy are also given.


Sign in / Sign up

Export Citation Format

Share Document