scholarly journals Ultrastructural characterization of microlipophagy induced by the interaction of vacuoles and lipid bodies around generative and sperm cells in Arabidopsis pollen

PROTOPLASMA ◽  
2020 ◽  
Vol 258 (1) ◽  
pp. 129-138
Author(s):  
Kae Akita ◽  
Tomoko Takagi ◽  
Keiko Kobayashi ◽  
Kazuyuki Kuchitsu ◽  
Tsuneyoshi Kuroiwa ◽  
...  

AbstractDuring pollen maturation, various organelles change their distribution and function during development as male gametophytes. We analyzed the behavior of lipid bodies and vacuoles involved in lipophagy in Arabidopsis pollen using serial section SEM and conventional TEM. At the bicellular pollen stage, lipid bodies in the vegetative cells lined up at the surface of the generative cell. Vacuoles then tightly attached, drew in, and degraded the lipid bodies and eventually occupied the space of the lipid bodies. Degradation of lipid began before transfer of the entire contents of the lipid body. At the tricellular stage, vacuoles instead of lipid bodies surrounded the sperm cells. The degradation of lipid bodies is morphologically considered microautophagy. The atg2-1 Arabidopsis mutant is deficient in one autophagy-related gene (ATG). In this mutant, the assembly of vacuoles around sperm cells was sparser than that in wild-type pollen. The deficiency of ATG2 likely prevents or slows lipid degradation, although it does not prevent contact between organelles. These results demonstrate the involvement of microlipophagy in the pollen development of Arabidopsis.

2001 ◽  
Vol 79 (1) ◽  
pp. 118-129 ◽  
Author(s):  
Houman Fei ◽  
Vipen K Sawhney

The MS33 gene in Arabidopsis is required for stamen filament growth and for pollen maturation. The objective of this study was to characterize the effects of ms33 mutation on pollen development at the ultrastructural level. There were no differences between the wild type and ms33 mutant pollen development before the first mitotic division of microspores. At the bicellular pollen stage, the first signs of abnormalities were observed in the ms33 tapetum, which started to degenerate early and released osmiophilic material in the anther locule. In ms33 pollen, the endintine was thicker, and exintine thinner, than in the wild type, and the mutant pollen had large vacuoles. Later in development, the mutant pollen underwent second mitosis and produced two normal-looking sperm cells; however, the intine was precociously formed, and there were abnormalities in tryphine deposition on the pollen wall, in the size of vacuoles, and in the formation of lipid bodies in the vegetative cell cytoplasm. Based on these observations it is suggested that mutation in the MS33 gene interferes with intine formation and tryphine deposition, both of which negatively affect pollen desiccation resulting in large, highly vacuolate pollen that are nonviable.Key words: Arabidopsis, male sterility, mutant, pollen, tapetum, ultrastructure.


2014 ◽  
Vol 66 (2) ◽  
pp. 125-131 ◽  
Author(s):  
Krystyna Zając

Ultrastructural changes in <em>Arabidopsis thaliana</em> pollen, between late microspore stage and mature pollen stage were described. When the generative cell was peeled off from the intine, it was of spherical shape and had all usual organelles with the exception of plastids. The cytoplasm transformation of the vegetative cell included an increase in the number of mitochondria and changes in the accumulation of starch and lipid bodies. The starch plastids were observed at the bicellular and early tricellular pollen stages and next starch was utilized during the maturation procces. The lipid bodies of the vegetative cell form a very regular sheath around the generative cell and then, around the sperm cells. Before anthesis the lipid bodies were dispersed within the whole vegetative cell cytoplasm.


1988 ◽  
Vol 249 (3) ◽  
pp. 687-693 ◽  
Author(s):  
M J Hills ◽  
D J Murphy

Lipase (triacylglycerol lipase, EC 3.1.1.3) activities have been reported previously in the lipid body and microsomal membranes of oilseed-rape (Brassica napus cv. Andor) seedlings, but conflicting data made it unclear whether there was one lipase in the lipid bodies, with the microsomal activity being attributable to fragments of lipid-body membrane, or if there were two separate lipase activities. In the present study, simultaneous characterization of the lipases under identical conditions showed they differed substantially in their pH-activity curves, kinetics and substrate specificities. (1) The kinetics of the microsomal lipase showed that the rate of lipolysis reached a plateau at concentrations above 5 mM, whereas the lipid-body lipase showed a linear increase in activity with substrate concentration up to 20 mM. (2) The pH optimum of the microsomal lipase was 7.5, whereas that of the lipid-body lipase was 9.0. The microsomal lipase was greatly inhibited at higher pH values, whereas the lipid-body lipase was much less affected. (3) Activity of the microsomal lipase was greatly diminished when substrates with longer chain length were used, and enhanced 4-fold if the substrates contained a single double bond. The lipid-body lipase was relatively unaffected by the type of fatty acid in the triacylglycerol. (4) SDS/polyacrylamide-gel electrophoresis showed little or no cross-contamination of the lipid-body and microsomal fractions. (5) The microsomal lipase activity comprised 75-80% of the total extracted.


2004 ◽  
Vol 15 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Albert Pol ◽  
Sally Martin ◽  
Manuel A. Fernandez ◽  
Charles Ferguson ◽  
Amanda Carozzi ◽  
...  

Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cavDGV) to study LB formation and to examine its effect on LB function. We now show that the cavDGVmutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.


1997 ◽  
Vol 186 (6) ◽  
pp. 909-920 ◽  
Author(s):  
Patricia T. Bozza ◽  
Wengui Yu ◽  
John F. Penrose ◽  
Ellen S. Morgan ◽  
Ann M. Dvorak ◽  
...  

The specific intracellular sites at which enzymes act to generate arachidonate-derived eicosanoid mediators of inflammation are uncertain. We evaluated the formation and function of cytoplasmic lipid bodies. Lipid body formation in eosinophils was a rapidly (&lt;1 h) inducible response which was platelet-activating factor (PAF) receptor–mediated, involved signaling through protein kinase C, and required new protein synthesis. In intact and enucleated eosinophils, the PAF-induced increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. All principal eosinophil eicosanoid-forming enzymes, 5-lipoxygenase, leukotriene C4 synthase, and cyclooxygenase, were immunolocalized to native as well as newly induced lipid bodies in intact and enucleated eosinophils. Thus, lipid bodies are structurally distinct, inducible, nonnuclear sites for enhanced synthesis of paracrine eicosanoid mediators of inflammation.


Author(s):  
T. M. Weatherby ◽  
P.H. Lenz

Crustaceans, as well as other arthropods, are covered with sensory setae and hairs, including mechanoand chemosensory sensillae with a ciliary origin. Calanoid copepods are small planktonic crustaceans forming a major link in marine food webs. In conjunction with behavioral and physiological studies of the antennae of calanoids, we undertook the ultrastructural characterization of sensory setae on the antennae of Pleuromamma xiphias.Distal mechanoreceptive setae exhibit exceptional behavioral and physiological performance characteristics: high sensitivity (<10 nm displacements), fast reaction times (<1 msec latency) and phase locking to high frequencies (1-2 kHz). Unusual structural features of the mechanoreceptors are likely to be related to their physiological sensitivity. These features include a large number (up to 3000) of microtubules in each sensory cell dendrite, arising from or anchored to electron dense rods associated with the ciliary basal body microtubule doublets. The microtubules are arranged in a regular array, with bridges between and within rows. These bundles of microtubules extend far into each mechanoreceptive seta and terminate in a staggered fashion along the dendritic membrane, contacting a large membrane surface area and providing a large potential site of mechanotransduction.


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


2019 ◽  
Vol 4 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Alison E. Fowler ◽  
Rebecca E. Irwin ◽  
Lynn S. Adler

Parasites are linked to the decline of some bee populations; thus, understanding defense mechanisms has important implications for bee health. Recent advances have improved our understanding of factors mediating bee health ranging from molecular to landscape scales, but often as disparate literatures. Here, we bring together these fields and summarize our current understanding of bee defense mechanisms including immunity, immunization, and transgenerational immune priming in social and solitary species. Additionally, the characterization of microbial diversity and function in some bee taxa has shed light on the importance of microbes for bee health, but we lack information that links microbial communities to parasite infection in most bee species. Studies are beginning to identify how bee defense mechanisms are affected by stressors such as poor-quality diets and pesticides, but further research on this topic is needed. We discuss how integrating research on host traits, microbial partners, and nutrition, as well as improving our knowledge base on wild and semi-social bees, will help inform future research, conservation efforts, and management.


2014 ◽  
Vol 17 (1) ◽  
pp. 45-71
Author(s):  
Geo Siegwart

The main objective is an interpretation of the island parody, in particular a logical reconstruction of the parodying argument that stays close to the text. The parodied reasoning is identified as the proof in the second chapter of the Proslogion, more specifically, this proof as it is represented by Gaunilo in the first chapter of his Liber pro insipiente. The second task is a detailed comparison between parodied and parodying argument as well as an account of their common structure. The third objective is a tentative characterization of the nature and function of parodies of arguments. It seems that parodying does not add new pertinent points of view to the usual criticism of an argument.


2020 ◽  
Vol 129 (2) ◽  
pp. 189
Author(s):  
Jacenir Reis dos Santos-Mallet ◽  
Simone Patrícia Carneiro Freitas ◽  
Maria Luiza Ribeiro de Oliveira ◽  
Alice Helena Ricardo-Silva ◽  
Aníbal Gil Lopes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document