The role of metabolic reprogramming and de novo amino acid synthesis in collagen protein production by myofibroblasts: implications for organ fibrosis and cancer

Amino Acids ◽  
2021 ◽  
Author(s):  
Robert B. Hamanaka ◽  
Gökhan M. Mutlu
2020 ◽  
Vol 61 (6) ◽  
pp. 1028-1040
Author(s):  
Dan Pereksta ◽  
Dillon King ◽  
Fahmida Saki ◽  
Amith Maroli ◽  
Elizabeth Leonard ◽  
...  

Abstract Cellular homeostasis is maintained by the proteasomal degradation of regulatory and misfolded proteins, which sustains the amino acid pool. Although proteasomes alleviate stress by removing damaged proteins, mounting evidence indicates that severe stress caused by salt, metal(oids), and some pathogens can impair the proteasome. However, the consequences of proteasome inhibition in plants are not well understood and even less is known about how its malfunctioning alters metabolic activities. Lethality causes by proteasome inhibition in non-photosynthetic organisms stem from amino acid depletion, and we hypothesized that plants respond to proteasome inhibition by increasing amino acid biosynthesis. To address these questions, the short-term effects of proteasome inhibition were monitored for 3, 8 and 48 h in the roots of Brassica napus treated with the proteasome inhibitor MG132. Proteasome inhibition did not affect the pool of free amino acids after 48 h, which was attributed to elevated de novo amino acid synthesis; these observations coincided with increased levels of sulfite reductase and nitrate reductase activities at earlier time points. However, elevated amino acid synthesis failed to fully restore protein synthesis. In addition, transcriptome analysis points to perturbed abscisic acid signaling and decreased sugar metabolism after 8 h of proteasome inhibition. Proteasome inhibition increased the levels of alternative oxidase but decreased aconitase activity, most sugars and tricarboxylic acid metabolites in root tissue after 48 h. These metabolic responses occurred before we observed an accumulation of reactive oxygen species. We discuss how the metabolic response to proteasome inhibition and abiotic stress partially overlap in plants.


2018 ◽  
Vol 30 (10) ◽  
pp. 2240.1-2254 ◽  
Author(s):  
Umarah Mubeen ◽  
Jessica Jüppner ◽  
Jessica Alpers ◽  
Dirk K. Hincha ◽  
Patrick Giavalisco

2008 ◽  
Vol 190 (13) ◽  
pp. 4512-4520 ◽  
Author(s):  
Jiae Yun ◽  
Byeonghwa Jeon ◽  
Yi-Wen Barton ◽  
Paul Plummer ◽  
Qijing Zhang ◽  
...  

ABSTRACT DksA is well known for its regulatory role in the transcription of rRNA and genes involved in amino acid synthesis in many bacteria. DksA has also been reported to control expression of virulence genes in pathogenic bacteria. Here, we elucidated the roles of a DksA-like protein (CJJ81176_0160, Cj0125c) in the pathogenesis of Campylobacter jejuni. As in other bacteria, transcription of stable RNA was repressed by the DksA-like protein under stress conditions in C. jejuni. Transcriptomic and proteomic analyses of C. jejuni 81-176 and an isogenic mutant lacking the DksA-like protein showed differential expression of many genes involved in amino acid metabolism, iron-related metabolism, and other metabolic reactions. Also, the C. jejuni DksA-like protein mutant exhibited a decreased ability to invade intestinal cells and induce release of interleukin-8 from intestinal cells. These results suggest that the DksA-like protein plays an important regulatory role in diverse metabolic events and the virulence of C. jejuni.


2010 ◽  
Vol 76 (5) ◽  
pp. 1507-1515 ◽  
Author(s):  
Motoyuki Shimizu ◽  
Tatsuya Fujii ◽  
Shunsuke Masuo ◽  
Naoki Takaya

ABSTRACT Although branched-chain amino acids are synthesized as building blocks of proteins, we found that the fungus Aspergillus nidulans excretes them into the culture medium under hypoxia. The transcription of predicted genes for synthesizing branched-chain amino acids was upregulated by hypoxia. A knockout strain of the gene encoding the large subunit of acetohydroxy acid synthase (AHAS), which catalyzes the initial reaction of the synthesis, required branched-chain amino acids for growth and excreted very little of them. Pyruvate, a substrate for AHAS, increased the amount of hypoxic excretion in the wild-type strain. These results indicated that the fungus responds to hypoxia by synthesizing branched-chain amino acids via a de novo mechanism. We also found that the small subunit of AHAS regulated hypoxic branched-chain amino acid production as well as cellular AHAS activity. The AHAS knockout resulted in higher ratios of NADH/NAD+ and NADPH/NADP+ under hypoxia, indicating that the branched-chain amino acid synthesis contributed to NAD+ and NADP+ regeneration. The production of branched-chain amino acids and the hypoxic induction of involved genes were partly repressed in the presence of glucose, where cells produced ethanol and lactate and increased levels of lactate dehydrogenase activity. These indicated that hypoxic branched-chain amino acid synthesis is a unique alternative mechanism that functions in the absence of glucose-to-ethanol/lactate fermentation and oxygen respiration.


Yeast ◽  
1993 ◽  
Vol 9 (12) ◽  
pp. 1335-1342 ◽  
Author(s):  
Jerzy Brzywczy ◽  
Andrzej Paszewski

Metabolism ◽  
1982 ◽  
Vol 31 (12) ◽  
pp. 1210-1218 ◽  
Author(s):  
Jean-Jacques Robert ◽  
Dennis M. Bier ◽  
X.H. Zhao ◽  
Dwight E. Matthews ◽  
Vernon R. Young

2005 ◽  
Vol 32 (9) ◽  
pp. 831 ◽  
Author(s):  
Bok-Rye Lee ◽  
Woo-Jin Jung ◽  
Kil-Yong Kim ◽  
Jean-Christophe Avice ◽  
Alain Ourry ◽  
...  

In white clover (Trifolium repens L. cv. Regal) the kinetics of de novo synthesis of amino acid and protein were compared by tracing 15N under well-watered (control) or water-deficit conditions. The physiological relationship between ammonia concentration, in response to the change in leaf water parameters, and de novo synthesis of amino acid and protein was also assessed. Leaf and root dry mass were not significantly affected for the first 3 d, whereas metabolic parameters such as total N and ammonia were significantly affected within the first day of water-deficit treatment. Inhibitory effect of water deficit on N acquisition from the soil was significant throughout the experimental period. Water deficit induced a significant increase in ammonia concentration in leaves during the first 3 d, and in roots for only the first day. In both leaves and roots, an increase in de novo amino acid synthesis, which peaked in leaves within the first 3 d of water-deficit treatment (Ψw ≥ –1.18 MPa), was observed. The rate of decrease in de novo protein synthesis gradually accelerated as the duration of the water-deficit treatment increased. There was a significant positive relationship between ammonia production and the increase in de novo amino acid synthesis during the first 3-d period, but not during the later period (day 3–day 7). This experiment clearly indicates that the increase in de novo amino acid synthesis caused by water deficit is a transient adaptive response occurring during the first few days and that it is associated with the increased ammonia concentrations, which in turn arise in response to a decrease in de novo protein synthesis.


2017 ◽  
Vol 63 (3) ◽  
pp. 1076-1092 ◽  
Author(s):  
Natalie Loick-Wilde ◽  
Sarah C. Weber ◽  
Elvita Eglite ◽  
Iris Liskow ◽  
Detlef Schulz-Bull ◽  
...  

Diabetes ◽  
1985 ◽  
Vol 34 (1) ◽  
pp. 67-73 ◽  
Author(s):  
J. J. Robert ◽  
B. Beaufrere ◽  
J. Koziet ◽  
J. F. Desjeux ◽  
D. M. Bier ◽  
...  

1999 ◽  
Vol 45 (2) ◽  
pp. 185-189 ◽  
Author(s):  
Linda E McHolland ◽  
Daniel R Caldwell

Partially purified Anaplasma marginale initial bodies were cultivated in a cell-free system in the presence of [3-14C]pyruvate for 24 or 48 h. Experiments showed that a significant portion of the pyruvate supplied to the cultures was incorporated into initial body components. Label incorporation was reduced by 72% in the presence of oxytetracycline. Fractionation and chromatography of the organisms revealed radioactive incorporation as alanine. This is the first report of de novo amino acid synthesis by A. marginale demonstrating that the rickettsia is capable of using pyruvate, an erythrocyte glycolytic product, in its metabolism.Key words: Anaplasma marginale, pyruvate metabolism, amino acid synthesis.


Sign in / Sign up

Export Citation Format

Share Document