acid metabolism
Recently Published Documents


TOTAL DOCUMENTS

9714
(FIVE YEARS 1522)

H-INDEX

144
(FIVE YEARS 18)

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Mohamed Z. Elhussiny ◽  
Phuong V. Tran ◽  
Yuriko Tsuru ◽  
Shogo Haraguchi ◽  
Elizabeth R. Gilbert ◽  
...  

The objective of this study was to determine the effects of centrally administered taurine on rectal temperature, behavioral responses and brain amino acid metabolism under isolation stress and the presence of co-injected corticotropin-releasing factor (CRF). Neonatal chicks were centrally injected with saline, 2.1 pmol of CRF, 2.5 μmol of taurine or both taurine and CRF. The results showed that CRF-induced hyperthermia was attenuated by co-injection with taurine. Taurine, alone or with CRF, significantly decreased the number of distress vocalizations and the time spent in active wakefulness, as well as increased the time spent in the sleeping posture, compared with the saline- and CRF-injected chicks. An amino acid chromatographic analysis revealed that diencephalic leucine, isoleucine, tyrosine, glutamate, asparagine, alanine, β-alanine, cystathionine and 3-methylhistidine were decreased in response to taurine alone or in combination with CRF. Central taurine, alone and when co-administered with CRF, decreased isoleucine, phenylalanine, tyrosine and cysteine, but increased glycine concentrations in the brainstem, compared with saline and CRF groups. The results collectively indicate that central taurine attenuated CRF-induced hyperthermia and stress behaviors in neonatal chicks, and the mechanism likely involves the repartitioning of amino acids to different metabolic pathways. In particular, brain leucine, isoleucine, cysteine, glutamate and glycine may be mobilized to cope with acute stressors.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 205
Author(s):  
Di Wu ◽  
Mingjuan Gu ◽  
Zhuying Wei ◽  
Chunling Bai ◽  
Guanghua Su ◽  
...  

Myostatin (MSTN) is a major negative regulator of skeletal muscle mass and causes a variety of metabolic changes. However, the effect of MSTN knockout on bile acid metabolism has rarely been reported. In this study, the physiological and biochemical alterations of serum in MSTN+/− and wild type (WT) cattle were investigated. There were no significant changes in liver and kidney biochemical indexes. However, compared with the WT cattle, lactate dehydrogenase, total bile acid (TBA), cholesterol, and high-density lipoprotein (HDL) in the MSTN+/− cattle were significantly increased, and glucose, low-density lipoprotein (LDL), and triglycerides (TG) were significantly decreased, indicating that MSTN knockout affected glucose and lipid metabolism and total bile acids content. Targeted metabolomic analysis of the bile acids and their derivatives was performed on serum samples and found that bile acids were significantly increased in the MSTN+/− cattle compared with the WT cattle. As the only bile acid synthesis organ in the body, we performed metabolomic analysis on the liver to study the effect of MSTN knockout on hepatic metabolism. Metabolic pathway enrichment analysis of differential metabolites showed significant enrichment of the primary bile acid biosynthesis and bile secretion pathway in the MSTN+/− cattle. Targeted metabolomics data further showed that MSTN knockout significantly increased bile acid content in the liver, which may have resulted from enhanced bile acid synthesis due to the expression of bile acid synthesis genes, cholesterol 7 alpha-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1), and upregulation in the liver of the MSTN+/− cattle. These results indicate that MSTN knockout does not adversely affect bovine fitness but regulates bile acid metabolism via enhanced bile acid synthesis. This further suggests a role of MSTN in regulating metabolism.


Author(s):  
Ely Cristina Negrelli Cordeiro ◽  
Átila Francisco Mógor ◽  
Juliana Oliveira Amatussi ◽  
Gilda Mógor ◽  
Harielly Marianne Costa Marques ◽  
...  

2022 ◽  
Author(s):  
Ye Xiao ◽  
Xiang Lin ◽  
Zhong-Qun Liu ◽  
Mei-Lan Zhou ◽  
Tian-Yu Ren ◽  
...  

Abstract Although diquat is a widely used water-soluble herbicide in the world, its toxicity to freshwater fish has not been well characterized. In this study, gas chromatography-mass spectrometry (GC-MS) based metabolomics approach combined with histopathological examination and biochemical assays was applied to comprehensively assess the hepatotoxicity in zebrafish (Brachydanio rerio) after diquat exposure at two dosages of 0.34 and 1.69 mg·L−1 for 35 days. The results indicated that 1.69 mg·L−1 diquat exposure cause serious cellular swell and vacuolization with increased nuclear abnormality, and lead to obvious disturbance of antioxidative system and dysfunction in liver; while no obvious pathological injury could be detected, and changes in liver biochemistry were less pronounced at the dose level of 0.34 mg·L−1. Multivariate statistical analysis and pattern recognition showed different GC-MS profiles of zebrafish liver following exposure to diquat, the cluster of the treated groups were both clearly separated from the control samples. The differentially abundant metabolites mainly include carbohydrates, amino acids, lipids, nucleotides, and their derivatives. In the exposure group of 1.69 mg·L−1 diquat, severe disturbances of amino acid metabolism played important biological roles associated with inhibition of energy metabolism, reduced immunity, and disorders in neurotransmitters as pathway analysis revealed. Additionally, fluctuation of inositol, creatine, and pantothenic acid, substances associated with stress regulation and signal transduction, participating in metabolic abnormalities in zebrafish with diquat-triggered hepatic damage. Energy metabolism of zebrafish exposed on 0.34 mg·L−1 diquat more inclined to rely on anaerobic glycolysis than the normal ones. Amino acid metabolism responses were less affected, but obvious interference effects on lipid metabolism were observed with 0.34 mg·L−1 diquat exposure. These results imply increased sensitivity of metabolomics versus histopathology and clinical chemistry in recognizing liver toxicity of diquat. This study will contribute to explore possible mechanism of hepatic damages on nontarget freshwater fish induced by diquat and provide important basis for its environmental risk assessment.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qingping Ma ◽  
Laichao Song ◽  
Zhanhai Niu ◽  
Jingshan Li ◽  
Yu Wang ◽  
...  

“Huangjinya” is a light-sensitive albino variety and is widely cultivated in China. It has been proved that red light could promote the vegetable growth of plants. However, the mechanism of “Huangjinya” in response to a red light is unclear. This study used high-throughput sequencing technology to analyze the transcriptome of tender shoots of “Huangjinya” under the white and red light supplement conditions. At the same time, liquid chromatography tandem mass spectrometry (LC-MS) was used to analyze metabolite changes under different light conditions. Transcriptome analysis revealed that a total of 174 differentially expressed genes (DEGs) were identified after the red light supplement. Kyoto encyclopedia of genes and genomes (KEGG) classification indicated that amino acid metabolism enriched the most DEGs. In addition, two phenylpropanoid metabolism-related genes and five glutathione S-transferase genes (CsGSTs) were found to be expressed differently. Metabolome analysis revealed that 193 differential metabolites were obtained. Being the same as transcriptome analysis, most differential metabolites were enriched in amino acids, sweet and umami tasting amino acids were increased, and bitter-tasting amino acids were decreased after the red light supplement. In summary, red light supplementary treatment may be propitious to the quality of “Huangjinya” due to its regulatory effect on amino acid metabolism. Also, CsGSTs involved phenylpropanoid metabolism contributed to tea quality changes in “Huangjinya.”


2022 ◽  
Vol 12 ◽  
Author(s):  
Jing Geng ◽  
Yuan Liu ◽  
Huaping Dai ◽  
Chen Wang

Fatty acid metabolism, including the de novo synthesis, uptake, oxidation, and derivation of fatty acids, plays several important roles at cellular and organ levels. Recent studies have identified characteristic changes in fatty acid metabolism in idiopathic pulmonary fibrosis (IPF) lungs, which implicates its dysregulation in the pathogenesis of this disorder. Here, we review the evidence for how fatty acid metabolism contributes to the development of pulmonary fibrosis, focusing on the profibrotic processes associated with specific types of lung cells, including epithelial cells, macrophages, and fibroblasts. We also summarize the potential therapeutics that target this metabolic pathway in treating IPF.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Jun-Qin Li ◽  
Hui-Jie Jiang ◽  
Xiu-Yun Su ◽  
Li Feng ◽  
Na-Zhi Zhan ◽  
...  

Schwann cells have been found to promote osteogenesis by an unclear molecular mechanism. To better understand how Schwann cells accelerate osteogenesis, RNA-Seq and LC-MS/MS were utilized to explore the transcriptomic and metabolic response of MC3T3-E1 to Schwann cells. Osteogenic differentiation was determined by ALP staining. Lentiviruses were constructed to alter the expression of Mif (macrophage migration inhibitory factor) in Schwann cells. Western blot (WB) analysis was employed to detect the protein expression. The results of this study show that Mif is essential for Schwann cells to promote osteogenesis, and its downstream CD74/FOXO1 is also involved in the promotion of Schwann cells on osteogenesis. Further, Schwann cells regulate amino acid metabolism and lipid metabolism in preosteoblasts. These findings unveil the mechanism for Schwann cells to promote osteogenesis where Mif is a key factor.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zitai Guo ◽  
Shengtao Gao ◽  
Jun Ding ◽  
Junhao He ◽  
Lu Ma ◽  
...  

Heat stress (HS) alters the rumen fermentation of dairy cows thereby affecting the metabolism of rumen papillae and thus the epithelial barrier function. The aim of the present study was to investigate if HS damages the barrier function of ruminal epithelia. Eight multiparous Holstein dairy cows with rumen cannula were randomly equally allocated to two replicates (n = 4), with each replicate being subjected to heat stress or thermal neutrality and pair-feeding in four environmental chambers. Micromorphological observation showed HS aggravated the shedding of the corneum and destroyed the physical barrier of the ruminal epithelium to a certain extent. Transcriptomics analysis of the rumen papillae revealed pathways associated with DNA replication and repair and amino acid metabolism were perturbated, the biological processes including sister chromatid segregation, etc. were up-regulated by HS, while the MAPK and NF-kB cell signaling pathways were downregulated. However, no heat stress-specific change in the expression of tight junction protein or TLR4 signaling was found, suggesting that HS negatively affected the physical barrier of the ruminal epithelium to some extent but did not break the ruminal epithelium. Heat stress invoked mechanisms to maintain the integrity of the rumen epithelial barrier by upregulating the expression of heat shock protein and repairments in rumen papillae. The increase in amino acid metabolism in rumen papillae might affect the nutrient utilization of the whole body. The findings of this study may inform future research to better understand how heat stress affects the physiology and productivity of lactating cows and the development of mitigation strategies.


Sign in / Sign up

Export Citation Format

Share Document