Survival, Gap Formation, and Recovery Dynamics in Grassland Ecosystems Exposed to Heat Extremes: The Role of Species Richness

Ecosystems ◽  
2001 ◽  
Vol 4 (8) ◽  
pp. 797-806 ◽  
Author(s):  
Liesbeth Van Peer ◽  
Ivan Nijs ◽  
Jan Bogaert ◽  
Iris Verelst ◽  
Dirk Reheul
2004 ◽  
Vol 94 (2) ◽  
pp. 111-121 ◽  
Author(s):  
P.A.V. Borges ◽  
V.K. Brown

AbstractThe arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local–regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= α diversity) and regional species richness was estimated at the pasture level (= γ diversity) with the ‘first-order-Jackknife’ estimator. Three related issues were addressed: (i) the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii) quantification of the relative contributions of α and β diversity to regional diversity using additive partitioning; and (iii) the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing β-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.


2021 ◽  
Vol 13 (14) ◽  
pp. 2649
Author(s):  
Hafiz Ali Imran ◽  
Damiano Gianelle ◽  
Michele Scotton ◽  
Duccio Rocchini ◽  
Michele Dalponte ◽  
...  

Plant biodiversity is an important feature of grassland ecosystems, as it is related to the provision of many ecosystem services crucial for the human economy and well-being. Given the importance of grasslands, research has been carried out in recent years on the potential to monitor them with novel remote sensing techniques. In this study, the optical diversity (also called spectral diversity) approach was adopted to check the potential of using high-resolution hyperspectral images to estimate α-diversity in grassland ecosystems. In 2018 and 2019, grassland species composition was surveyed and canopy hyperspectral data were acquired at two grassland sites: Monte Bondone (IT-MBo; species-rich semi-natural grasslands) and an experimental farm of the University of Padova, Legnaro, Padua, Italy (IT-PD; artificially established grassland plots with a species-poor mixture). The relationship between biodiversity (species richness, Shannon’s, species evenness, and Simpson’s indices) and optical diversity metrics (coefficient of variation-CV and standard deviation-SD) was not consistent across the investigated grassland plant communities. Species richness could be estimated by optical diversity metrics with an R = 0.87 at the IT-PD species-poor site. In the more complex and species-rich grasslands at IT-MBo, the estimation of biodiversity indices was more difficult and the optical diversity metrics failed to estimate biodiversity as accurately as in IT-PD probably due to the higher number of species and the strong canopy spatial heterogeneity. Therefore, the results of the study confirmed the ability of spectral proxies to detect grassland α-diversity in man-made grassland ecosystems but highlighted the limitations of the spectral diversity approach to estimate biodiversity when natural grasslands are observed. Nevertheless, at IT-MBo, the optical diversity metric SD calculated from post-processed hyperspectral images and transformed spectra showed, in the red part of the spectrum, a significant correlation (up to R = 0.56, p = 0.004) with biodiversity indices. Spatial resampling highlighted that for the IT-PD sward the optimal optical pixel size was 1 cm, while for the IT-MBo natural grassland it was 1 mm. The random pixel extraction did not improve the performance of the optical diversity metrics at both study sites. Further research is needed to fully understand the links between α-diversity and spectral and biochemical heterogeneity in complex heterogeneous ecosystems, and to assess whether the optical diversity approach can be adopted at the spatial scale to detect β-diversity. Such insights will provide more robust information on the mechanisms linking grassland diversity and optical heterogeneity.


2008 ◽  
Vol 19 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Rune H. Økland ◽  
Knut Rydgren ◽  
Tonje Ø kland

2016 ◽  
Vol 30 (5) ◽  
pp. 1080-1088 ◽  
Author(s):  
Judi E. Hewitt ◽  
Simon F. Thrush ◽  
Kari E. Ellingsen

2013 ◽  
Vol 88 (3) ◽  
pp. 302-309 ◽  
Author(s):  
N. Pakdeenarong ◽  
P. Siribat ◽  
K. Chaisiri ◽  
B. Douangboupha ◽  
A. Ribas ◽  
...  

AbstractThe helminth communities of wild murid rodents were investigated in Luang Prabang and Champasak province, Lao PDR. Thirteen species of rodents (404 individuals) were infected by 19 species of parasites (2 trematode, 3 cestode, 14 nematode species). Four of the recorded helminth species (Echinostoma malayanum,Raillietinasp.,Hymenolepis diminutaandH. nana)are known to cause potential zoonotic helminthiases of medical importance in the South-East Asian region. Individual helminth infection was significantly higher in the wet season. Habitat significantly influenced individual helminth species richness and individual helminth abudance, with a decrease of individual helminth species richness and individual helminth abundance from forest habitat to agricultural and human settlement habitats. The reduction of helminth diversity and abundance is discussed in relation to the ongoing increase of human influence on habitats in Lao PDR.


2020 ◽  
Vol 29 (13) ◽  
pp. 3533-3550
Author(s):  
Gabriele Gheza ◽  
Silvia Assini ◽  
Chiara Lelli ◽  
Lorenzo Marini ◽  
Helmut Mayrhofer ◽  
...  

Abstract In dry habitats of European lowlands terricolous lichens and bryophytes are almost neglected in conservation practises, even if they may strongly contribute to biodiversity. This study aims at (a) testing the role of heathlands, acidic and calcareous dry grasslands for lichen and bryophyte diversity and conservation in lowland areas of northern Italy characterized by high human impact and habitat fragmentation; (b) detecting the effect of environmental drivers and vegetation dynamics on species richness and composition. Lichens, bryophytes, vascular plants, and environmental variables were recorded in 287 circular plots for 75 sites. Our results indicate that heathlands, acidic and calcareous dry grasslands host peculiar terricolous lichen and bryophyte communities that include several species of conservation concern. Thus, each habitat provides a complementary contribution to lichen and bryophyte diversity in continental lowland landscapes. Furthermore, in each habitat different factors drive species richness and composition with contrasting patterns between lichens and bryophytes. In terms of conservation, our results indicate that management of lowland dry habitats should act at both local and landscape scales. At local scale, vegetation dynamics should be controlled in order to avoid biodiversity loss due to vegetation dynamics and wood encroachment. At the landscape scale, patches of all the three habitats should be maintained to maximize regional diversity.


Sign in / Sign up

Export Citation Format

Share Document