Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network

2017 ◽  
Vol 30 (6) ◽  
pp. 1357-1368 ◽  
Author(s):  
Li-Hua Wang ◽  
Xiao-Ping Zhao ◽  
Jia-Xin Wu ◽  
Yang-Yang Xie ◽  
Yong-Hong Zhang
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhiwen Huang ◽  
Jianmin Zhu ◽  
Jingtao Lei ◽  
Xiaoru Li ◽  
Fengqing Tian

Tool wear monitoring is essential in precision manufacturing to improve surface quality, increase machining efficiency, and reduce manufacturing cost. Although tool wear can be reflected by measurable signals in automatic machining operations, with the increase of collected data, features are manually extracted and optimized, which lowers monitoring efficiency and increases prediction error. For addressing the aforementioned problems, this paper proposes a tool wear monitoring method using vibration signal based on short-time Fourier transform (STFT) and deep convolutional neural network (DCNN) in milling operations. First, the image representation of acquired vibration signals is obtained based on STFT, and then the DCNN model is designed to establish the relationship between obtained time-frequency maps and tool wear, which performs adaptive feature extraction and automatic tool wear prediction. Moreover, this method is demonstrated by employing three tool wear experimental datasets collected from three-flute ball nose tungsten carbide cutter of a high-speed CNC machine under dry milling. Finally, the experimental results prove that the proposed method is more accurate and relatively reliable than other compared methods.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Lai ◽  
Qiuping Huang ◽  
Jiang Xin ◽  
Hufei Yu ◽  
Jingxi Wen ◽  
...  

Few studies have investigated the functional patterns of methamphetamine abstainers. A better understanding of the underlying neurobiological mechanism in the brains of methamphetamine abstainers will help to explain their abnormal behaviors. Forty-two male methamphetamine abstainers, currently in a long-term abstinence status (for at least 14 months), and 32 male healthy controls were recruited. All subjects underwent functional MRI while responding to drug-associated cues. This study proposes to combine a convolutional neural network with a short-time Fourier transform to identify different brain patterns between methamphetamine abstainers and controls. The short-time Fourier transformation provides time-localized frequency information, while the convolutional neural network extracts the structural features of the time–frequency spectrograms. The results showed that the classifier achieved a satisfactory performance (98.9% accuracy) and could extract robust brain voxel information. The highly discriminative power voxels were mainly concentrated in the left inferior orbital frontal gyrus, the bilateral postcentral gyri, and the bilateral paracentral lobules. This study provides a novel insight into the different functional patterns between methamphetamine abstainers and healthy controls. It also elucidates the pathological mechanism of methamphetamine abstainers from the view of time–frequency spectrograms.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Hongmei Liu ◽  
Lianfeng Li ◽  
Jian Ma

The main challenge of fault diagnosis lies in finding good fault features. A deep learning network has the ability to automatically learn good characteristics from input data in an unsupervised fashion, and its unique layer-wise pretraining and fine-tuning using the backpropagation strategy can solve the difficulties of training deep multilayer networks. Stacked sparse autoencoders or other deep architectures have shown excellent performance in speech recognition, face recognition, text classification, image recognition, and other application domains. Thus far, however, there have been very few research studies on deep learning in fault diagnosis. In this paper, a new rolling bearing fault diagnosis method that is based on short-time Fourier transform and stacked sparse autoencoder is first proposed; this method analyzes sound signals. After spectrograms are obtained by short-time Fourier transform, stacked sparse autoencoder is employed to automatically extract the fault features, and softmax regression is adopted as the method for classifying the fault modes. The proposed method, when applied to sound signals that are obtained from a rolling bearing test rig, is compared with empirical mode decomposition, Teager energy operator, and stacked sparse autoencoder when using vibration signals to verify the performance and effectiveness of the proposed method.


2009 ◽  
Vol 626-627 ◽  
pp. 535-540
Author(s):  
B.P. Tang ◽  
F. Li ◽  
W.Y. Liu

A new fault diagnosis method to suppress cross terms of Wigner-Ville distribution (WVD) using Adaptive Short-time Fourier Transform (ASTFT) spectrum is put forward. The relationships of correlation between auto terms and cross terms of WVD are obtained theoretically by analyzing the WVD. Firstly, the signal ASTFT spectrum which can determine the signal component positions in the time-frequency plane is obtained. Then, the ASTFT spectrum as a window function is selected to process the signal WVD. Thus the cross terms can be effectively restrained. The simulation results show that a better resolution and more effective suppression of cross terms can be obtained. At last, the proposed method is applied to the fault diagnosis of bearing. The simulation and the experiment results indicate that the proposed method is effective in feature extraction.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4827 ◽  
Author(s):  
Hengchang Liu ◽  
Dechen Yao ◽  
Jianwei Yang ◽  
Xi Li

The rolling bearing is an important part of the train’s running gear, and its operating state determines the safety during the running of the train. Therefore, it is important to monitor and diagnose the health status of rolling bearings. A convolutional neural network is widely used in the field of fault diagnosis because it does not require feature extraction. Considering that the size of the network model is large and the requirements for monitoring equipment are high. This study proposes a novel bearing fault diagnosis method based on lightweight network ShuffleNet V2 with batch normalization and L2 regularization. In the experiment, the one-dimensional time-domain signal is converted into a two-dimensional Time-Frequency Graph (TFG) using a short-time Fourier transform, though the principle of graphics to enhance the TFG dataset. The model mainly consists of two units, one for extracting features and one for spatial down-sampling. The building units are repeatedly stacked to construct the whole model. By comparing the proposed method with the origin ShuffleNet V2, machine learning model and state-of-the-art fault diagnosis model, the generalization of the proposed method for bearing fault diagnosis is verified.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chao Fu ◽  
Qing Lv ◽  
Hsiung-Cheng Lin

It is crucial to carry out the fault diagnosis of rotating machinery by extracting the features that contain fault information. Many previous works using a deep convolutional neural network (CNN) have achieved excellent performance in finding fault information from feature extraction of detected signals. They, however, may suffer from time-consuming and low versatility. In this paper, a CNN integrated with the adaptive batch normalization (ABN) algorithm (ABN-CNN) is developed to avoid high computing resource requirements of such complex networks. It uses a large-scale convolution kernel at the grassroots level and a multidimensional 3 × 1 small convolution nuclear. Therefore, a fast convergence and high recognition accuracy under noise and load variation environment can be achieved for bearing fault diagnosis. The performance results verify that the proposed model is superior to Support Vector Machine with Fast Fourier Transform (FFT-SVM) and Multilayer Perceptron with Fast Fourier Transform (FFT-MLP) models and Deep Neural Network with Fast Fourier Transform (FFT-DNN).


Sign in / Sign up

Export Citation Format

Share Document