On the convergence rate of the Kačanov scheme for shear-thinning fluids
AbstractWe explore the convergence rate of the Kačanov iteration scheme for different models of shear-thinning fluids, including Carreau and power-law type explicit quasi-Newtonian constitutive laws. It is shown that the energy difference contracts along the sequence generated by the iteration. In addition, an a posteriori computable contraction factor is proposed, which improves, on finite-dimensional Galerkin spaces, previously derived bounds on the contraction factor in the context of the power-law model. Significantly, this factor is shown to be independent of the choice of the cut-off parameters whose use was proposed in the literature for the Kačanov iteration applied to the power-law model. Our analytical findings are confirmed by a series of numerical experiments.