Take-over expectation and criticality in Level 3 automated driving: a test track study on take-over behavior in semi-trucks
Abstract With the introduction of advanced driving assistance systems managing longitudinal and lateral control, conditional automated driving is seemingly in near future of series vehicles. While take-over behavior in the passenger car context has been investigated intensively in recent years, publications on semi-trucks with professional drivers are sparse. The effects influencing expert drivers during take-overs in this context lack thorough investigation and are required to design systems that facilitate safe take-overs. While multiple findings seem to cohere in passenger cars and semi-trucks, these findings rely on simulated studies without taking environments as found in the real world into account. A test track study was conducted, simulating highway driving with 27 professional non-affiliated truck drivers. The participants drove an automated Level 3 semi-truck while a non-driving-related task was available. Multiple time critical take-over situations were initiated during the drives to investigate four main objectives regarding driver behavior. (1) With these results, comparison of reaction times and behavior can be drawn to previous simulator studies. The effect of situation criticality (2) and training (3) of take-over situations is investigated. (4) The influence of warning expectation on driver behavior is explored. Results obtained displayed very quick time to hands on steering and time to first reaction all under 2.4 s. Highly critical situations generate very quick reaction times M = 0.81 s, while the manipulation of expectancy yielded no significant variation in reaction times. These reaction times serve as a reference of what can be expected from drivers under optimal take-over conditions, with quick reactions at high speed in critical situations.