scholarly journals Moult of overwintering Wood Warblers Phylloscopus sibilatrix in an annual-cycle perspective

Author(s):  
Crinan Jarrett ◽  
Luke L. Powell ◽  
Tabe T. Regine Claire ◽  
Melanie Tchoumbou ◽  
Barbara Helm

AbstractWood Warblers, an Afro-Palearctic migrant species, are declining steadily in Europe likely due to mortality outside their breeding grounds. However, little is known about their overwintering, and records about the sensitive life-cycle stage of moult in Africa are practically absent. To fill this gap, we report on moult of Wood Warblers captured over two winters (January–February) in 2019–2020 in Cameroon. We caught 14 individuals, of which 12 were monitored for flight feather moult. All inspected individuals showed advanced stages of flight feather renewal. Despite low sample sizes, Underhill-Zucchini moult models aptly explained variation in primary and secondary moult (R2 = 0.61). Estimated moult onset date was 26 December, completion date was 25 February, and moult duration was 61 days. These findings fit well with experimental data on the annual cycle and the timing of recently published migration tracks of Wood Warblers. Jointly, the data suggest that moult timing is set by an internal programme, which enables Wood Warblers to organise their multi-stage migration such that they reach suitable moulting habitat in time, and can depart in time with a fresh plumage for the breeding grounds. In our study, moult occurred during the peak of the dry season, which in Cameroon nonetheless shows high relative humidity. During our mist-netting on 28 cocoa plantations of varying shade cover, Wood Warblers were caught on 6 farms whose canopies were comparatively open. These data suggest that the birds encounter in Cameroon relatively stable climatic conditions for moult, and do not measurably prefer closed-canopy forests. Our findings are important, because successful moult increases survival prospects and because moult needs to be safely embedded in a migratory life cycle. Hence, information on moult timing and location is essential for identifying year-round vulnerabilities of Wood Warblers.

Author(s):  
Martina Caruso ◽  
Rui Pinho ◽  
Federica Bianchi ◽  
Francesco Cavalieri ◽  
Maria Teresa Lemmo

AbstractA life cycle framework for a new integrated classification system for buildings and the identification of renovation strategies that lead to an optimal balance between reduction of seismic vulnerability and increase of energy efficiency, considering both economic losses and environmental impacts, is discussed through a parametric application to an exemplificative case-study building. Such framework accounts for the economic and environmental contributions of initial construction, operational energy consumption, earthquake-induced damage repair activities, retrofitting interventions, and demolition. One-off and annual monetary expenses and environmental impacts through the building life cycle are suggested as meaningful performance metrics to develop an integrated classification system for buildings and to identify the optimal renovation strategy leading to a combined reduction of economic and environmental impacts, depending on the climatic conditions and the seismic hazard at the site of interest. The illustrative application of the framework to an existing school building is then carried out, investigating alternative retrofitting solutions, including either sole structural retrofitting options or sole energy refurbishments, as well as integrated strategies that target both objectives, with a view to demonstrate its practicality and to explore its ensuing results. The influence of seismic hazard and climatic conditions is quantitatively investigated, by assuming the building to be located into different geographic locations.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oscar Daniel Rivera Baena ◽  
Maria Valentina Clavijo Mesa ◽  
Carmen Elena Patino Rodriguez ◽  
Fernando Jesus Guevara Carazas

PurposeThis paper aims to determine the stage of the life cycle where the trucks of a waste collection fleet from a Colombian city are located through a reliability approach. The reliability analysis and the evaluation of curve of operational costs allow to know the moment in which it is necessary to make decisions regarding an asset, its maintenance or possible replacement.Design/methodology/approachFor a dataset presented as maintenance work orders, the time to failures (TTFs) for each vehicle in the fleet were calculated. Then, a probability density function for those TTFs was fitted to locate each vehicle in a region of the bathtub curve and to calculate the reliability of the whole fleet. A general functional analysis was also developed to understand the function of the vehicles.FindingsIt was possible to determine that the largest proportion of the fleet was in the final stage of the life cycle, in this sense, the entire fleet represent critical assets which in most of cases could be worth replacement or overhaul.Originality/valueIn this study, an address is exposed for the identification of critical equipment by reliability and statistical analysis. This analysis is also integrated with the maintenance management process. This is a broadly interested topic since it allows to support the maintenance and operational decision-making process, indicating the focus of resource allocation all over the entire asset life cycle.


1994 ◽  
Vol 14 (5) ◽  
pp. 2975-2984
Author(s):  
H Charest ◽  
G Matlashewski

Leishmania protozoans are the causative agents of leishmaniasis, a major parasitic disease in humans. During their life cycle, Leishmania protozoans exist as flagellated promastigotes in the sand fly vector and as nonmotile amastigotes in the mammalian hosts. The promastigote-to-amastigote transformation occurs in the phagolysosomal compartment of the macrophage cell and is a critical step for the establishment of the infection. To study this cytodifferentiation process, we differentially screened an amastigote cDNA library with life cycle stage-specific cDNA probes and isolated seven cDNAs representing amastigote-specific transcripts. Five of these were closely related (A2 series) and recognized, by Northern (RNA) blot analyses, a 3.5-kb transcript in amastigotes and in amastigote-infected macrophages. Expression of the amastigote-specific A2 gene was induced in promastigotes when they were transferred from culture medium at 26 degrees C and pH 7.4 to medium at 37 degrees C and pH 4.5, conditions which mimic the macrophage phagolysosomal environment. A2 genes are clustered in tandem arrays, and a 6-kb fragment corresponding to a unit of the cluster was cloned and partially sequenced. An open reading frame found within the A2-transcribed region potentially encoded a 22-kDa protein containing repetitive sequences. The recombinant A2 protein produced in Escherichia coli cells was specifically recognized by immune serum from a patient with visceral leishmaniasis. The A2 protein repetitive element has strong homology with an S antigen of Plasmodium falciparum, the protozoan parasite responsible for malaria. Both the A2 protein of Leishmania donovani and the S antigen of P. falciparum are stage specific and developmentally expressed in mammalian hosts.


2016 ◽  
Vol 36 (1) ◽  
pp. 243-253 ◽  
Author(s):  
Sandra F. Gonçalves ◽  
Maria D. Pavlaki ◽  
Rafael Lopes ◽  
Julia Hammes ◽  
Julián Alberto Gallego-Urrea ◽  
...  

2020 ◽  
Vol 12 (10) ◽  
pp. 4265 ◽  
Author(s):  
Vicent Penadés-Plà ◽  
David Martínez-Muñoz ◽  
Tatiana García-Segura ◽  
Ignacio J. Navarro ◽  
Víctor Yepes

Most of the definitions of sustainability include three basic pillars: economic, environmental, and social. The economic pillar has always been evaluated but not necessarily in the sense of economic sustainability. On the other hand, the environmental pillar is increasingly being considered, while the social pillar is weakly developed. Focusing on the environmental and social pillars, the use of methodologies to allow a wide assessment of these pillars and the integration of the assessment in a few understandable indicators is crucial. This article is structured into two parts. In the first part, a review of life cycle impact assessment methods, which allow a comprehensive assessment of the environmental and social pillars, is carried out. In the second part, a complete environmental and social sustainability assessment is made using the ecoinvent database and ReCiPe method, for the environmental pillar, and SOCA database and simple Social Impact Weighting method, for the social pillar. This methodology was used to compare three optimized bridges: two box-section post-tensioned concrete road bridges with a variety of initial and maintenance characteristics, and a pre-stressed concrete precast bridge. The results show that there is a high interrelation between the environmental and social impact for each life cycle stage.


2018 ◽  
Vol 10 (10) ◽  
pp. 3516 ◽  
Author(s):  
Angelina Roša (Rosha) ◽  
Natalja Lace

Organizations need innovation to be competitive and sustainable on their marketplace. Sustainable performance is an important precondition for growth and development. In spite of a body of literature, non-financial factors of sustainable performance remain an open issue. Coaching has gained considerable attention in the business world for its impact on sustainable performance. The current research investigates the use of coaching interaction to facilitate organizational sustainable growth and development in the context of Miller and Friesen’s five stage life-cycle model. The expert opinion survey is chosen as a central method of research. The questionnaire is developed on the literature review that is focused on the drivers for sustainable development throughout the life cycle, and the features of coaching that accelerate these driving forces. Fifteen experts took part in the survey conducted from November 2017 to January 2018. The results are estimated by considering the competence coefficient for each expert. The findings led to creation of an open innovation model, which displays relationships between the appropriate coaching forms and types and the organizational life cycle stages. The developed model enables choosing the optimal way of coaching delivery at any life cycle stage. This model is particularly valuable for the coaching support programs.


Sign in / Sign up

Export Citation Format

Share Document