scholarly journals Impact of Airway Gas Exchange on the Multiple Inert Gas Elimination Technique: Theory

2010 ◽  
Vol 38 (3) ◽  
pp. 1017-1030 ◽  
Author(s):  
Joseph C. Anderson ◽  
Michael P. Hlastala
1995 ◽  
Vol 79 (3) ◽  
pp. 918-928 ◽  
Author(s):  
J. E. Souders ◽  
S. C. George ◽  
N. L. Polissar ◽  
E. R. Swenson ◽  
M. P. Hlastala

Exchange of inert gases across the conducting airways has been demonstrated by using an isolated dog tracheal preparation and has been characterized by using a mathematical model (E. R. Swenson, H. T. Robertson, N. L. Polissar, M. E. Middaugh, and M. P. Hlastala, J. Appl. Physiol. 72: 1581–1588, 1992). Theory predicts that gas exchange is both diffusion and perfusion dependent, with gases with a higher blood-gas partition coefficient exchanging more efficiently. The present study evaluated the perfusion dependence of airway gas exchange in an in situ canine tracheal preparation. Eight dogs were studied under general anesthesia with the same isolated tracheal preparation. Tracheal perfusion (Q) was altered from control blood flow (Qo) by epinephrine or papaverine instilled into the trachea and was measured with fluorescent microspheres. Six inert gases of differing blood-gas partition coefficients were used to measure inert gas elimination. Gas exchange was quantified as excretion (E), equal to exhaled partial pressure divided by arterial partial pressure. Data were plotted as ln [E/(l-E)] vs. In (Q/Qo), and the slopes were determined by least squares. Excretion was a positive function of Q, and the magnitude of the response of each gas to changes in Q was similar and highly significant (P < or = 0.0002). These results confirm a substantial perfusion dependence of airway gas exchange.


1992 ◽  
Vol 72 (4) ◽  
pp. 1581-1588 ◽  
Author(s):  
E. R. Swenson ◽  
H. T. Robertson ◽  
N. L. Polissar ◽  
M. E. Middaugh ◽  
M. P. Hlastala

We studied CO2 and inert gas elimination in the isolated in situ trachea as a model of conducting airway gas exchange. Six inert gases with various solubilities and molecular weights (MW) were infused into the left atria of six pentobarbital-anesthetized dogs (group 1). The unidirectionally ventilated trachea behaved as a high ventilation-perfusion unit (ratio = 60) with no appreciable dead space. Excretion of higher-MW gases appeared to be depressed, suggesting a MW dependence to inert gas exchange. This was further explored in another six dogs (group 2) with three gases of nearly equal solubility but widely divergent MWs (acetylene, 26; Freon-22, 86.5; isoflurane, 184.5). Isoflurane and Freon-22 excretions were depressed 47 and 30%, respectively, relative to acetylene. In a theoretical model of airway gas exchange, neither a tissue nor a gas phase diffusion resistance predicted our results better than the standard equation for steady-state alveolar inert gas elimination. However, addition of a simple ln (MW) term reduced the remaining residual sum of squares by 40% in group 1 and by 83% in group 2. Despite this significant MW influence on tracheal gas exchange, we calculate that the quantitative gas exchange capacity of the conducting airways in total can account for less than or equal to 16% of any MW-dependent differences observed in pulmonary inert gas elimination.


2001 ◽  
Vol 95 (6) ◽  
pp. 1414-1421 ◽  
Author(s):  
Matthias Hübler ◽  
Jennifer E. Souders ◽  
Erin D. Shade ◽  
Nayak L. Polissar ◽  
Carmel Schimmel ◽  
...  

Background Perfluorocarbon (PFC) liquids are known to improve gas exchange and pulmonary function in various models of acute respiratory failure. Vaporization has been recently reported as a new method of delivering PFC to the lung. Our aim was to study the effect of PFC vapor on the ventilation/perfusion (VA/Q) matching and relative pulmonary blood flow (Qrel) distribution. Methods In nine sheep, lung injury was induced using oleic acid. Four sheep were treated with vaporized perfluorohexane (PFX) for 30 min, whereas the remaining sheep served as control animals. Vaporization was achieved using a modified isoflurane vaporizer. The animals were studied for 90 min after vaporization. VA/Q distributions were estimated using the multiple inert gas elimination technique. Change in Qrel distribution was assessed using fluorescent-labeled microspheres. Results Treatment with PFX vapor improved oxygenation significantly and led to significantly lower shunt values (P &lt; 0.05, repeated-measures analysis of covariance). Analysis of the multiple inert gas elimination technique data showed that animals treated with PFX vapor demonstrated a higher VA/Q heterogeneity than the control animals (P &lt; 0.05, repeated-measures analysis of covariance). Microsphere data showed a redistribution of Qrel attributable to oleic acid injury. Qrel shifted from areas that were initially high-flow to areas that were initially low-flow, with no difference in redistribution between the groups. After established injury, Qrel was redistributed to the nondependent lung areas in control animals, whereas Qrel distribution did not change in treatment animals. Conclusion In oleic acid lung injury, treatment with PFX vapor improves gas exchange by increasing VA/Q heterogeneity in the whole lung without a significant change in gravitational gradient.


1986 ◽  
Vol 60 (5) ◽  
pp. 1590-1598 ◽  
Author(s):  
M. D. Hammond ◽  
G. E. Gale ◽  
K. S. Kapitan ◽  
A. Ries ◽  
P. D. Wagner

Previous studies have shown both worsening ventilation-perfusion (VA/Q) relationships and the development of diffusion limitation during exercise at simulated altitude and suggested that similar changes could occur even at sea level. We used the multiple-inert gas-elimination technique to further study gas exchange during exercise in healthy subjects at sea level. Mixed expired and arterial respiratory and inert gas tensions, cardiac output, heart rate, minute ventilation, respiratory rate, and blood temperature were recorded at rest and during steady-state exercise in the following order: rest, minimal exercise (75 W), heavy exercise (300 W), heavy exercise breathing 100% O2, repeat rest, moderate exercise (225 W), and light exercise (150 W). Alveolar-to-arterial O2 tension difference increased linearly with O2 uptake (VO2) (6.1 Torr X min-1 X 1(-1) VO2). This could be fully explained by measured VA/Q inequality at mean VO2 less than 2.5 l X min-1. At higher VO2, the increase in alveolar-to-arterial O2 tension difference could not be explained by VA/Q inequality alone, suggesting the development of diffusion limitation. VA/Q inequality increased significantly during exercise (mean log SD of perfusion increased from 0.28 +/- 0.13 at rest to 0.58 +/- 0.30 at VO2 = 4.0 l X min-1, P less than 0.01). This increase was not reversed by 100% O2 breathing and appeared to persist at least transiently following exercise. These results confirm and extend the earlier suggestions (8, 21) of increasing VA/Q inequality and O2 diffusion limitation during heavy exercise at sea level in normal subjects and demonstrate that these changes are independent of the order of performance of exercise.


1971 ◽  
pp. 179-191 ◽  
Author(s):  
Edward T. Flynn ◽  
C.J. Lambertsen
Keyword(s):  

2003 ◽  
Vol 94 (3) ◽  
pp. 1186-1192 ◽  
Author(s):  
G. Kim Prisk ◽  
Harold J. B. Guy ◽  
John B. West ◽  
James W. Reed

The analysis of the gas in a single expirate has long been used to estimate the degree of ventilation-perfusion (V˙a/Q˙) inequality in the lung. To further validate this estimate, we examined three measures ofV˙a/Q˙ inhomogeneity calculated from a single full exhalation in nine anesthetized mongrel dogs under control conditions and after exposure to aerosolized methacholine. These measurements were then compared with arterial blood gases and with measurements of V˙a/Q˙ inhomogeneity obtained using the multiple inert gas elimination technique. The slope of the instantaneous respiratory exchange ratio (R slope) vs. expired volume was poorly correlated with independent measures, probably because of the curvilinear nature of the relationship due to continuing gas exchange. When R was converted to the intrabreathV˙a/Q˙ (iV˙/Q˙), the best index was the slope of iV˙/Q˙ vs. volume over phase III (iV˙/Q˙slope). This was strongly correlated with independent measures, especially those relating to inhomogeneity of perfusion. The correlations for iV˙/Q˙ slope and R slope considerably improved when only the first half of phase III was considered. We conclude that a useful noninvasive measurement ofV˙a/Q˙ inhomogeneity can be derived from the intrabreath respiratory exchange ratio.


1979 ◽  
Vol 47 (6) ◽  
pp. 1239-1244 ◽  
Author(s):  
C. W. Dueker ◽  
C. J. Lambertsen ◽  
J. J. Rosowski ◽  
J. C. Saunders

Nitrous oxide entry into the middle ear gas space was studied in cats in relation to anesthesia and the vestibular dysfunction caused by isobaric inert gas counter-diffusion in diving. A catheter implanted in the auditory bulla was used for direct gas sampling and pressure measurements. Experiments were designed to evaluate the participation of the eustachian tube, mucosal blood vessels, and tympanic membrane in middle ear gas exchange. The eustachian tube did not contribute to N2O entry and the mucosal blood supply only contributed about one-third of the total N2O accumulation. Diffusion across the tympanic membrane accounted for most of the N2O entering the middle ear from ambient and respiratory environments containing N2O.


1982 ◽  
Vol 52 (3) ◽  
pp. 683-689 ◽  
Author(s):  
H. T. Robertson ◽  
R. L. Coffey ◽  
T. A. Standaert ◽  
W. E. Truog

Pulmonary gas exchange during high-frequency low-tidal volume ventilation (HFV) (10 Hz, 4.8 ml/kg) was compared with conventional ventilation (CV) and an identical inspired fresh gas flow in pentobarbital-anesthetized dogs. Comparing respiratory and infused inert gas exchange (Wagner et al., J. Appl. Physiol. 36: 585--599, 1974) during HFV and CV, the efficiency of oxygenation was not different, but the Bohr physiological dead space ratio was greater on HFV (61.5 +/- 2.2% vs. 50.6 +/- 1.4%). However, the elimination of the most soluble inert gas (acetone) was markedly enhanced by HFV. The increased elimination of the soluble infused inert gases during HFV compared with CV may be related to the extensive intraregional gas mixing that allows the conducting airways to serve as a capacitance for the soluble inert gases. Comparing as exchange during HFV with three different density carrier gases (He, N2, and Ar), the efficiency of elimination of Co2 or the intravenously infused inert gases was greatest with He-O2. However, the alveolar-arterial partial pressure difference for O2 on He-O2 exceeded that on N2-O2 by 5.4 Torr during HFV. The finding agrees with similar observations during CV, suggesting that this aspect of gas exchange is not substantially altered by HFV.


Sign in / Sign up

Export Citation Format

Share Document