volume ventilation
Recently Published Documents


TOTAL DOCUMENTS

396
(FIVE YEARS 92)

H-INDEX

39
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Laura A Dada ◽  
Lynn C Welch ◽  
Natalia D Magnani ◽  
Ziyou Ren ◽  
Patricia L Brazee ◽  
...  

Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with ARDS secondary to SARS-CoV-2 pneumonia, low tidal volume ventilation to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here, we show that hypercapnia limits β-catenin signaling in alveolar type 2 (AT2) cells, leading to reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα-fibroblasts from those maintaining AT2 progenitor activity and towards those that antagonize β-catenin signaling and limit progenitor function. Activation of β-catenin signaling in AT2 cells, rescues the effects of hypercapnia on proliferation. Inhibition of AT2 proliferation in hypercapnic patients may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier, increasing lung flooding, ventilator dependency and mortality.


PeerJ ◽  
2022 ◽  
Vol 9 ◽  
pp. e12649
Author(s):  
Rainer Thomas ◽  
Tanghua Liu ◽  
Arno Schad ◽  
Robert Ruemmler ◽  
Jens Kamuf ◽  
...  

Background Shedding of the endothelial glycocalyx can be observed regularly during sepsis. Moreover, sepsis may be associated with acute respiratory distress syndrome (ARDS), which requires lung protective ventilation with the two cornerstones of application of low tidal volume and positive end-expiratory pressure. This study investigated the effect of a lung protective ventilation on the integrity of the endothelial glycocalyx in comparison to a high tidal volume ventilation mode in a porcine model of sepsis-induced ARDS. Methods After approval by the State and Institutional Animal Care Committee, 20 male pigs were anesthetized and received a continuous infusion of lipopolysaccharide to induce septic shock. The animals were randomly assigned to either low tidal volume ventilation, high tidal volume ventilation, or no-LPS-group groups and observed for 6 h. In addition to the gas exchange parameters and hematologic analyses, the serum hyaluronic acid concentrations were determined from central venous blood and from pre- and postpulmonary and pre- and postcerebral circulation. Post-mortem analysis included histopathological evaluation and determination of the pulmonary and cerebral wet-to-dry ratios. Results Both sepsis groups developed ARDS within 6 h of the experiment and showed significantly increased serum levels of hyaluronic acid in comparison to the no-LPS-group. No significant differences in the hyaluronic acid concentrations were detected before and after pulmonary and cerebral circulation. There was also no significant difference in the serum hyaluronic acid concentrations between the two sepsis groups. Post-mortem analysis showed no significant difference between the two sepsis groups. Conclusion In a porcine model of septic shock and ARDS, the serum hyaluronic acid levels were significantly elevated in both sepsis groups in comparison to the no-LPS-group. Intergroup comparison between lung protective ventilated and high tidal ventilated animals revealed no significant differences in the serum hyaluronic acid levels.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lan Wu ◽  
Yan Cheng ◽  
Shunxiang Peng ◽  
Wensheng Zhang ◽  
Chaoxiong Zhang

Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) inhibitor and inhibits cholesterol synthesis. Recently, atorvastatin also showed anti-inflammatory effect in acute lung injury, ameliorating pulmonary gas-blood exchanging function. Sphingosine kinase 1 plays a central role in endothelial (EC) cytoskeleton rearrangement and EC barrier integrity regulation. In this study, the role of sphingosine kinase 1 in atorvastatin anti-inflammatory effect against acute lung injury was investigated. Both wild-type (WT) and SphK1-/- mice were challenged with high tidal volume ventilation (40 ml/kg body weight, 65 breathing/min, 4 hours). The acute lung injury was evaluated and the mechanisms were explored. In WT mice, atorvastatin treatment significantly decreased acute lung injury responding to high tidal volume ventilation (HT), including protein, cellular infiltration, and cytokine releasing; comparing to WT mice, SphK1-/- mice showed significantly worsen pulmonary injuries on HT model. Moreover, the atorvastatin-mediated anti-inflammatory effect was diminished in SphK1-/- mice. To further confirm the role of SphK1 in VILI, we then compared the inflammatory response of endothelial cells that were isolated from WT and SphK1-/- mice to cyclic stretching. Similarly, atorvastatin significantly decreased cytokine generation from WT EC responding to cyclic stretching. Atorvastatin also significantly preserved endothelial junction integrity in WT EC against thrombin challenge. However, the inhibitory effect of atorvastatin on cytokine generation induced by cyclic stretching was abolished on SphK1-/- mice EC. The endothelial junction integrity effects of atorvastatin also diminished on SphK1-/- mouse EC. Signal analysis indicated that atorvastatin inhibited JNK activation induced by cyclic stretch. SphK1 knockout also blocked atorvastatin-mediated VE-cadherin junction enhancement. In summary, by inhibition of MAPK activity and maintenance of EC junction homeostasis, SphK1 plays a critical role in atorvastatin-mediated anti-inflammatory effects in both cellular and in vivo model. This study also offers an insight into mechanical stress-mediated acute lung injury and potential therapy in the future.


2021 ◽  
Vol 50 (1) ◽  
pp. 551-551
Author(s):  
Karlee De Monnin ◽  
Emily Terian ◽  
Lauren Yaegar ◽  
Ryan Pappal ◽  
Nicholas Mohr ◽  
...  

Author(s):  
Xiang Li ◽  
Zhi-Lin Ni ◽  
Jun Wang ◽  
Xiu-Cheng Liu ◽  
Hui-Lian Guan ◽  
...  

AbstractLow tidal volume ventilation strategy may lead to atelectasis without proper positive end-expiratory pressure (PEEP) and recruitment maneuver (RM) settings. RM followed by individualized PEEP was a new method to optimize the intraoperative pulmonary function. We conducted a systematic review and network meta-analysis of randomized clinical trials to compare the effects of individualized PEEP + RM on intraoperative pulmonary function and hemodynamic with other PEEP and RM settings. The primary outcomes were intraoperative oxygenation index and dynamic compliance, while the secondary outcomes were intraoperative heart rate and mean arterial pressure. In total, we identified 15 clinical trials containing 36 randomized groups with 3634 participants. Ventilation strategies were divided into eight groups by four PEEP (L: low, M: moderate, H: high, and I: individualized) and two RM (yes or no) settings. The main results showed that IPEEP + RM group was superior to all other groups regarding to both oxygenation index and dynamic compliance. LPEEP group was inferior to LPEEP + RM, MPEEP, MPEEP + RM, and IPEEP + RM in terms of oxygenation index and LPEEP + RM, MPEEP, MPEEP + RM, HPEEP + RM, IPEEP, and IPEEP + RM in terms of dynamic compliance. All comparisons were similar for secondary outcomes. Our analysis suggested that individualized PEEP and RM may be the optimal low tidal volume ventilation strategy at present, while low PEEP without RM is not suggested.


2021 ◽  
Vol 66 (10) ◽  
pp. 1630-1633
Author(s):  
Jose Dianti ◽  
Eddy Fan

Author(s):  
Sunny Nijbroek ◽  
Dimitri Ivanov ◽  
Liselotte Hol ◽  
Markus Hollmann ◽  
Ary Serpa Neto ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Amado-Rodríguez ◽  
Cecilia Del Busto ◽  
Inés López-Alonso ◽  
Diego Parra ◽  
Juan Mayordomo-Colunga ◽  
...  

Abstract Background Cardiogenic pulmonary oedema (CPE) may contribute to ventilator-associated lung injury (VALI) in patients with cardiogenic shock. The appropriate ventilatory strategy remains unclear. We aimed to evaluate the impact of ultra-low tidal volume ventilation with tidal volume of 3 ml/kg predicted body weight (PBW) in patients with CPE and veno–arterial extracorporeal membrane oxygenation (V–A ECMO) on lung inflammation compared to conventional ventilation. Methods A single-centre randomized crossover trial was performed in the Cardiac Intensive Care Unit (ICU) at a tertiary university hospital. Seventeen adults requiring V–A ECMO and mechanical ventilation due to cardiogenic shock were included from February 2017 to December 2018. Patients were ventilated for two consecutive periods of 24 h with tidal volumes of 6 and 3 ml/kg of PBW, respectively, applied in random order. Primary outcome was the change in proinflammatory mediators in bronchoalveolar lavage fluid (BALF) between both ventilatory strategies. Results Ventilation with 3 ml/kg PBW yielded lower driving pressures and end-expiratory lung volumes. Overall, there were no differences in BALF cytokines. Post hoc analyses revealed that patients with high baseline levels of IL-6 showed statistically significant lower levels of IL-6 and IL-8 during ultra-low tidal volume ventilation. This reduction was significantly proportional to the decrease in driving pressure. In contrast, those with lower IL-6 baseline levels showed a significant increase in these biomarkers. Conclusions Ultra-low tidal volume ventilation in patients with CPE and V–A ECMO may attenuate inflammation in selected cases. VALI may be driven by an interaction between the individual proinflammatory profile and the mechanical load overimposed by the ventilator. Trial registration The trial was registered in ClinicalTrials.gov (identifier NCT03041428, Registration date: 2nd February 2017).


Sign in / Sign up

Export Citation Format

Share Document