Properties of skeptical c-inference for conditional knowledge bases and its realization as a constraint satisfaction problem

2018 ◽  
Vol 83 (3-4) ◽  
pp. 247-275 ◽  
Author(s):  
Christoph Beierle ◽  
Christian Eichhorn ◽  
Gabriele Kern-Isberner ◽  
Steven Kutsch
Author(s):  
Christian Komo ◽  
Christoph Beierle

AbstractFor nonmonotonic reasoning in the context of a knowledge base $\mathcal {R}$ R containing conditionals of the form If A then usually B, system P provides generally accepted axioms. Inference solely based on system P, however, is inherently skeptical because it coincides with reasoning that takes all ranking models of $\mathcal {R}$ R into account. System Z uses only the unique minimal ranking model of $\mathcal {R}$ R , and c-inference, realized via a complex constraint satisfaction problem, takes all c-representations of $\mathcal {R}$ R into account. C-representations constitute the subset of all ranking models of $\mathcal {R}$ R that are obtained by assigning non-negative integer impacts to each conditional in $\mathcal {R}$ R and summing up, for every world, the impacts of all conditionals falsified by that world. While system Z and c-inference license in general different sets of desirable entailments, the first major objective of this article is to present system W. System W fully captures and strictly extends both system Z and c-inference. Moreover, system W can be represented by a single strict partial order on the worlds over the signature of $\mathcal {R}$ R . We show that system W exhibits further inference properties worthwhile for nonmonotonic reasoning, like satisfying the axioms of system P, respecting conditional indifference, and avoiding the drowning problem. The other main goal of this article is to provide results on our investigations, underlying the development of system W, of upper and lower bounds that can be used to restrict the set of c-representations that have to be taken into account for realizing c-inference. We show that the upper bound of n − 1 is sufficient for capturing c-inference with respect to $\mathcal {R}$ R having n conditionals if there is at least one world verifying all conditionals in $\mathcal {R}$ R . In contrast to the previous conjecture that the number of conditionals in $\mathcal {R}$ R is always sufficient, we prove that there are knowledge bases requiring an upper bound of 2n− 1, implying that there is no polynomial upper bound of the impacts assigned to the conditionals in $\mathcal {R}$ R for fully capturing c-inference.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manuel Bodirsky ◽  
Bertalan Bodor

Abstract Let K exp + \mathcal{K}_{{\operatorname{exp}}{+}} be the class of all structures 𝔄 such that the automorphism group of 𝔄 has at most c ⁢ n d ⁢ n cn^{dn} orbits in its componentwise action on the set of 𝑛-tuples with pairwise distinct entries, for some constants c , d c,d with d < 1 d<1 . We show that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of finite covers of first-order reducts of unary structures, and also that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of first-order reducts of finite covers of unary structures. It follows that the class of first-order reducts of finite covers of unary structures is closed under taking model companions and model-complete cores, which is an important property when studying the constraint satisfaction problem for structures from K exp + \mathcal{K}_{{\operatorname{exp}}{+}} . We also show that Thomas’ conjecture holds for K exp + \mathcal{K}_{{\operatorname{exp}}{+}} : all structures in K exp + \mathcal{K}_{{\operatorname{exp}}{+}} have finitely many first-order reducts up to first-order interdefinability.


Sign in / Sign up

Export Citation Format

Share Document