Journal of Group Theory
Latest Publications


TOTAL DOCUMENTS

1324
(FIVE YEARS 236)

H-INDEX

21
(FIVE YEARS 3)

Published By Walter De Gruyter Gmbh

1435-4446, 1433-5883

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Diego Sulca

Abstract The subgroup zeta function and the normal zeta function of a finitely generated virtually nilpotent group can be expressed as finite sums of Dirichlet series admitting Euler product factorization. We compute these series except for a finite number of local factors when the group is virtually nilpotent of Hirsch length 3. We deduce that they can be meromorphically continued to the whole complex plane and that they satisfy local functional equations. The complete computation (with no exception of local factors) is presented for those groups that are also torsion-free, that is, for the 3-dimensional almost-Bieberbach groups.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Francesco Noseda ◽  
Ilir Snopce

Abstract Let 𝑝 be a prime. We say that a pro-𝑝 group is self-similar of index p k p^{k} if it admits a faithful self-similar action on a p k p^{k} -ary regular rooted tree such that the action is transitive on the first level. The self-similarity index of a self-similar pro-𝑝 group 𝐺 is defined to be the least power of 𝑝, say p k p^{k} , such that 𝐺 is self-similar of index p k p^{k} . We show that, for every prime p ⩾ 3 p\geqslant 3 and all integers 𝑑, there exist infinitely many pairwise non-isomorphic self-similar 3-dimensional hereditarily just-infinite uniform pro-𝑝 groups of self-similarity index greater than 𝑑. This implies that, in general, for self-similar 𝑝-adic analytic pro-𝑝 groups, one cannot bound the self-similarity index by a function that depends only on the dimension of the group.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Matthew Daws

Abstract Assume that A ⁢ ( G ) A(G) and B ⁢ ( H ) B(H) are the Fourier and Fourier–Stieltjes algebras of locally compact groups 𝐺 and 𝐻, respectively. Ilie and Spronk have shown that continuous piecewise affine maps α : Y ⊆ H → G \alpha\colon Y\subseteq H\to G induce completely bounded homomorphisms Φ : A ⁢ ( G ) → B ⁢ ( H ) \Phi\colon A(G)\to B(H) and that, when 𝐺 is amenable, every completely bounded homomorphism arises in this way. This generalised work of Cohen in the abelian setting. We believe that there is a gap in a key lemma of the existing argument, which we do not see how to repair. We present here a different strategy to show the result, which instead of using topological arguments, is more combinatorial and makes use of measure-theoretic ideas, following more closely the original ideas of Cohen.


2022 ◽  
Vol 25 (1) ◽  
pp. i-iv

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Falk Bannuscher ◽  
Alastair Litterick ◽  
Tomohiro Uchiyama

Abstract Let 𝑘 be a non-perfect separably closed field. Let 𝐺 be a connected reductive algebraic group defined over 𝑘. We study rationality problems for Serre’s notion of complete reducibility of subgroups of 𝐺. In particular, we present the first example of a connected non-abelian 𝑘-subgroup 𝐻 of 𝐺 that is 𝐺-completely reducible but not 𝐺-completely reducible over 𝑘, and the first example of a connected non-abelian 𝑘-subgroup H ′ H^{\prime} of 𝐺 that is 𝐺-completely reducible over 𝑘 but not 𝐺-completely reducible. This is new: all previously known such examples are for finite (or non-connected) 𝐻 and H ′ H^{\prime} only.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Asma Ibrahim Almazaydeh ◽  
Dugald Macpherson

Abstract We construct via Fraïssé amalgamation an 𝜔-categorical structure whose automorphism group is an infinite oligomorphic Jordan primitive permutation group preserving a “limit of 𝐷-relations”. The construction is based on a semilinear order whose elements are labelled by sets carrying a 𝐷-relation, with strong coherence conditions governing how these 𝐷-sets are inter-related.


2021 ◽  
Vol 24 (6) ◽  
pp. i-iv

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jorge Soto-Andrade ◽  
Maria-Francisca Yáñez-Valdés

Abstract We show that the Gelfand character χ G \chi_{G} of a finite group 𝐺 (i.e. the sum of all irreducible complex characters of 𝐺) may be realized as a “twisted trace” g ↦ Tr ⁡ ( ρ g ∘ T ) g\mapsto\operatorname{Tr}(\rho_{g}\circ T) for a suitable involutive linear automorphism 𝑇 of L 2 ⁢ ( G ) L^{2}(G) , where ( L 2 ⁢ ( G ) , ρ ) (L^{2}(G),\rho) is the right regular representation of 𝐺. Moreover, we prove that, under certain hypotheses, we have T ⁢ ( f ) = f ∘ L T(f)=f\circ L ( f ∈ L 2 ⁢ ( G ) f\in L^{2}(G) ), where 𝐿 is an involutive anti-automorphism of 𝐺. The natural representation 𝜏 of 𝐺 associated to the natural 𝐿-conjugacy action of 𝐺 in the fixed point set Fix G ⁡ ( L ) \operatorname{Fix}_{G}(L) of 𝐿 turns out to be a Gelfand model for 𝐺 in some cases. We show that ( L 2 ⁢ ( Fix G ⁡ ( L ) ) , τ ) (L^{2}(\operatorname{Fix}_{G}(L)),\tau) fails to be a Gelfand model if 𝐺 admits non-trivial central involutions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiyong Chen ◽  
Hong Yi Huang

Abstract Let 𝐺 be a permutation group on a set Ω, and recall that a base for 𝐺 is a subset of Ω such that its pointwise stabiliser is trivial. In a recent paper, Burness and Giudici introduced the Saxl graph of 𝐺, denoted Σ ⁢ ( G ) \Sigma(G) , with vertex set Ω and two vertices adjacent if and only if they form a base for 𝐺. If 𝐺 is transitive, then Σ ⁢ ( G ) \Sigma(G) is vertex-transitive, and it is natural to consider its valency (which we refer to as the valency of 𝐺). In this paper, we present a general method for computing the valency of any finite transitive group, and we use it to calculate the exact valency of every primitive group with stabiliser a Frobenius group with cyclic kernel. As an application, we calculate the valency of every almost simple primitive group with an alternating socle and soluble stabiliser, and we use this to extend results of Burness and Giudici on almost simple primitive groups with prime-power or odd valency.


Sign in / Sign up

Export Citation Format

Share Document