scholarly journals Priority control of berth allocation problem in container terminals

Author(s):  
Evrim Ursavas
Author(s):  
Abbas Al-Refaie ◽  
Hala Abedalqader

This research proposes two optimization models to deal with the berth allocation problem. The first model considers the berth allocation problem under regular vessel arrivals to minimize the flow time of vessels in the marine container terminal, minimize the tardiness penalty costs, and maximize the satisfaction level of vessels’ operators on preferred times of departure. The second model optimizes the berth allocation problem under emergency conditions by maximizing the number of assigned vessels, minimizing the vessel’s waiting time, and maximizing the satisfaction level on the served ships. Two real examples are provided for model illustration under regular and emergent vessel arrivals. Results show that the proposed models effectively provide optimal vessel scheduling in the terminal, reduce costs at an acceptable satisfaction level of vessels’ operators, decrease the waiting time of vessels, and shorten the delay in departures under both regular and emergent vessel arrivals. In conclusion, the proposed models may provide valuable assistance to decision-makers in marine container terminals on determining optimal berth allocation under daily and emergency vessel arrivals. Future research considers quay crane assignment and scheduling problems.


2019 ◽  
Vol 11 (7) ◽  
pp. 2018 ◽  
Author(s):  
Hsien-Pin Hsu ◽  
Tai-Lin Chiang ◽  
Chia-Nan Wang ◽  
Hsin-Pin Fu ◽  
Chien-Chang Chou

Container terminals help countries to sustain their economic development. Improving the operational efficiency in a container terminal is important. In past research, genetic algorithms (GAs) have been widely used to cope with seaside operational problems, including the berth allocation problem (BAP) and quay crane assignment problem (QCAP) individually or simultaneously. However, most GA approaches in past studies were dedicated to generate time-invariant QC assignment that does not adjust QCs assigned to a ship. This may underutilize available QC capacity. In this research, three hybrid GAs (HGAs) have been proposed to deal with the dynamic and discrete BAP (DDBAP) and the dynamic QCAP (DQCAP) simultaneously. The three HGAs supports variable QC assignment in which QCs assigned to a ship can be further adjusted. The three HGAs employ the same crossover operator but a different mutation operator and a two-stage procedure is used. In the first stage, these HGAs can generate a BAP solution and a QCAP solution that is time-invariant. The time-invariant QC assignment solution is then further transformed into a variable one in the second stage. Experiments have been conducted to investigate the effects of the three HGA and the results showed that these HGAs outperformed traditional GAs in terms of fitness value. In particular, the HGA3 with Thoros mutation operator had the best performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yangcan Wu ◽  
Lixin Miao

Uncertainty is an inevitable aspect of seaside operations in container terminals. Operators therefore need to find robust plans that can resist the impact of uncertainties. Instead of solving a stochastic berth allocation problem, this paper proposes an efficient procedure for inserting buffers into baseline berth plans to strengthen the schedule stability. Such a method is highly versatile and compatible with various solutions to berth allocation problem with different objectives. Numerical results obtained by using simulation on a representative set of instances of the problem are reported; these indicate that the proposed procedure not only increases the flexibility of operations with minor loss of resource utilization but also addresses the impact of service priority. Hence, the contribution in this paper will provide a short path that bridges the gap between berth allocation problem in deterministic and stochastic circumstances.


2021 ◽  
Vol 9 (2) ◽  
pp. 152
Author(s):  
Edwar Lujan ◽  
Edmundo Vergara ◽  
Jose Rodriguez-Melquiades ◽  
Miguel Jiménez-Carrión ◽  
Carlos Sabino-Escobar ◽  
...  

This work introduces a fuzzy optimization model, which solves in an integrated way the berth allocation problem (BAP) and the quay crane allocation problem (QCAP). The problem is solved for multiple quays, considering vessels’ imprecise arrival times. The model optimizes the use of the quays. The BAP + QCAP, is a NP-hard (Non-deterministic polynomial-time hardness) combinatorial optimization problem, where the decision to assign available quays for each vessel adds more complexity. The imprecise vessel arrival times and the decision variables—berth and departure times—are represented by triangular fuzzy numbers. The model obtains a robust berthing plan that supports early and late arrivals and also assigns cranes to each berth vessel. The model was implemented in the CPLEX solver (IBM ILOG CPLEX Optimization Studio); obtaining in a short time an optimal solution for very small instances. For medium instances, an undefined behavior was found, where a solution (optimal or not) may be found. For large instances, no solutions were found during the assigned processing time (60 min). Although the model was applied for n = 2 quays, it can be adapted to “n” quays. For medium and large instances, the model must be solved with metaheuristics.


2021 ◽  
pp. 107168
Author(s):  
Emmanouil Thanos ◽  
Tulio Toffolo ◽  
Haroldo Gambini Santos ◽  
Wim Vancroonenburg ◽  
Greet Vanden Berghe

2001 ◽  
Vol 35 (4) ◽  
pp. 401-417 ◽  
Author(s):  
Akio Imai ◽  
Etsuko Nishimura ◽  
Stratos Papadimitriou

Sign in / Sign up

Export Citation Format

Share Document