AbstractWe study the optimal Bernoulli routing in a multiclass queueing system with a dedicated server for each class as well as a common (or multi-skilled) server that can serve jobs of all classes. Jobs of each class arrive according to a Poisson process. Each server has a holding cost per customer and use the processor sharing discipline for service. The objective is to minimize the weighted mean holding cost. First, we provide conditions under which classes send their traffic only to their dedicated server, only to the common server, or to both. A fixed point algorithm is given for the computation of the optimal solution. We then specialize to two classes and give explicit expressions for the optimal loads. Finally, we compare the cost of multi-skilled server with that of only dedicated or all common servers. The theoretical results are complemented by numerical examples that illustrate the various structural results as well as the convergence of the fixed point algorithm.