scholarly journals Decision space robustness for multi-objective integer linear programming

Author(s):  
Michael Stiglmayr ◽  
José Rui Figueira ◽  
Kathrin Klamroth ◽  
Luís Paquete ◽  
Britta Schulze

AbstractIn this article we introduce robustness measures in the context of multi-objective integer linear programming problems. The proposed measures are in line with the concept of decision robustness, which considers the uncertainty with respect to the implementation of a specific solution. An efficient solution is considered to be decision robust if many solutions in its neighborhood are efficient as well. This rather new area of research differs from robustness concepts dealing with imperfect knowledge of data parameters. Our approach implies a two-phase procedure, where in the first phase the set of all efficient solutions is computed, and in the second phase the neighborhood of each one of the solutions is determined. The indicators we propose are based on the knowledge of these neighborhoods. We discuss consistency properties for the indicators, present some numerical evaluations for specific problem classes and show potential fields of application.

Author(s):  
Arjan Akkermans ◽  
Gerhard Post ◽  
Marc Uetz

AbstractIn this paper we propose a two-phase approach to solve the shift and break design problem using integer linear programming. In the first phase we create the shifts, while heuristically taking the breaks into account. In the second phase we assign breaks to each occurrence of any shift, one by one, repeating this until no improvement is found. On a set of benchmark instances, composed by both randomly-generated and real-life ones, this approach obtains better results than the current best known method for shift and break design problem.


2012 ◽  
Vol 3 (4) ◽  
pp. 1-6 ◽  
Author(s):  
M.Jayalakshmi M.Jayalakshmi ◽  
◽  
P.Pandian P.Pandian

Author(s):  
Yiguang Gong ◽  
Yunping Liu ◽  
Chuanyang Yin

AbstractEdge computing extends traditional cloud services to the edge of the network, closer to users, and is suitable for network services with low latency requirements. With the rise of edge computing, its security issues have also received increasing attention. In this paper, a novel two-phase cycle algorithm is proposed for effective cyber intrusion detection in edge computing based on a multi-objective genetic algorithm (MOGA) and modified back-propagation neural network (MBPNN), namely TPC-MOGA-MBPNN. In the first phase, the MOGA is employed to build a multi-objective optimization model that tries to find the Pareto optimal parameter set for MBPNN. The Pareto optimal parameter set is applied for simultaneous minimization of the average false positive rate (Avg FPR), mean squared error (MSE) and negative average true positive rate (Avg TPR) in the dataset. In the second phase, some MBPNNs are created based on the parameter set obtained by MOGA and are trained to search for a more optimal parameter set locally. The parameter set obtained in the second phase is used as the input of the first phase, and the training process is repeated until the termination criteria are reached. A benchmark dataset, KDD cup 1999, is used to demonstrate and validate the performance of the proposed approach for intrusion detection. The proposed approach can discover a pool of MBPNN-based solutions. Combining these MBPNN solutions can significantly improve detection performance, and a GA is used to find the optimal MBPNN combination. The results show that the proposed approach achieves an accuracy of 98.81% and a detection rate of 98.23% and outperform most systems of previous works found in the literature. In addition, the proposed approach is a generalized classification approach that is applicable to the problem of any field having multiple conflicting objectives.


Sign in / Sign up

Export Citation Format

Share Document