Inhibition of Penicillium digitatum and Penicillium italicum in vitro and in planta with Panomycocin, a novel exo-β-1,3-glucanase isolated from Pichia anomala NCYC 434

2010 ◽  
Vol 99 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Demet Altınbay Izgu ◽  
Remziye Aysun Kepekci ◽  
Fatih Izgu
2013 ◽  
Vol 76 (10) ◽  
pp. 1761-1766 ◽  
Author(s):  
GÜLTEN TİRYAKİ GÜNDÜZ ◽  
FIKRET PAZIR

In this study, the effects of UV-C on two of the main wound pathogens of citrus fruits, Penicillium digitatum and Penicillium italicum, were investigated with different inoculation methods in vitro and on oranges. P. digitatum and P. italicum spores were inoculated onto the surface of potato dextrose agar or oranges using spread, spot, wound, and piercing inoculation methods. UV-C treatment for 1 min from a working distance of 8 cm reduced the numbers of P. italicum and P. digitatum by about 3.9 and 5.3 log units, respectively, following spread inoculation under in vitro conditions. Significant reductions were obtained after 1-min UV-C treatments of the tested fungi following inoculation using the spread and spot methods. With inoculation by the wound and piercing methods, the tested spores were not inactivated completely even after 10- and 20-min treatment times, respectively. The application of UV-C (7.92 kJ m−2) on oranges reduced the percentage of oranges infected at least threefold compared with the rate of infection in the untreated control samples. UV-C irradiation could effectively inactivate spores of P. italicum and P. digitatum inoculated by the spread plate and spot inoculation methods under in vitro and in vivo conditions. On the other hand, because of the low penetration ability of UV-C light, the tested fungi were not completely inactivated following inoculation with the wound and piercing methods. UV-C treatment has potential for use in surface decontamination of citrus fruits.


Textura ◽  
2018 ◽  
Vol 11 (20) ◽  
pp. 43-47
Author(s):  
Marilene Junqueira Machado ◽  
Noelma Miranda de Brito ◽  
Vânia de Jesus Santos ◽  
Lavinia dos Santos Mascarenhas

2021 ◽  
Author(s):  
Nathalie D Lackus ◽  
Axel Schmidt ◽  
Jonathan Gershenzon ◽  
Tobias G Köllner

AbstractBenzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.


Author(s):  
Mara Quaglia ◽  
Marika Bocchini ◽  
Benedetta Orfei ◽  
Roberto D’Amato ◽  
Franco Famiani ◽  
...  

AbstractThe purpose of this study was to determine whether zinc phosphate treatments of tomato plants (Solanum lycopersicum L.) can attenuate bacterial speck disease severity through reduction of Pseudomonas syringae pv. tomato (Pst) growth in planta and induce morphological and biochemical plant defence responses. Tomato plants were treated with 10 ppm (25.90 µM) zinc phosphate and then spray inoculated with strain DAPP-PG 215, race 0 of Pst. Disease symptoms were recorded as chlorosis and/or necrosis per leaf (%) and as numbers of necrotic spots. Soil treatments with zinc phosphate protected susceptible tomato plants against Pst, with reductions in both disease severity and pathogen growth in planta. The reduction of Pst growth in planta combined with significantly higher zinc levels in zinc-phosphate-treated plants indicated direct antimicrobial toxicity of this microelement, as also confirmed by in vitro assays. Morphological (i.e. callose apposition) and biochemical (i.e., expression of salicylic-acid-dependent pathogenesis-related protein PR1b1 gene) defence responses were induced by the zinc phosphate treatment, as demonstrated by histochemical and qPCR analyses, respectively. In conclusion, soil treatments with zinc phosphate can protect tomato plants against Pst attacks through direct antimicrobial activity and induction of morphological and biochemical plant defence responses.


2021 ◽  
Vol 22 (14) ◽  
pp. 7440
Author(s):  
Shraddha K. Dahale ◽  
Daipayan Ghosh ◽  
Kishor D. Ingole ◽  
Anup Chugani ◽  
Sang Hee Kim ◽  
...  

Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1′s contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 85
Author(s):  
Giuseppe Tatulli ◽  
Vanessa Modesti ◽  
Nicoletta Pucci ◽  
Valeria Scala ◽  
Alessia L’Aurora ◽  
...  

During recent years; Xylella fastidiosa subsp. pauca (Xfp) has spread in Salento causing relevant damage to the olive groves. Measures to contain the spreading of the pathogen include the monitoring of the areas bordering the so-called “infected” zone and the tree eradication in case of positive detection. In order to provide a control strategy aimed to maintain the tree productivity in the infected areas, we further evaluated the in vitro and in planta mid-term effectiveness of a zinc-copper-citric acid biocomplex. The compound showed an in vitro bactericidal activity and inhibited the biofilm formation in representative strains of X. fastidiosa subspecies, including Xfp isolated in Apulia from olive trees. The field mid-term evaluation of the control strategy assessed by quantitative real-time PCR in 41 trees of two olive groves of the “infected” area revealed a low concentration of Xfp over the seasons upon the regular spraying of the biocomplex over 3 or 4 consecutive years. In particular, the bacterial concentration lowered in July and October with respect to March, after six consecutive treatments. The trend was not affected by the cultivar and it was similar either in the Xfp-sensitive cultivars Ogliarola salentina and Cellina di Nardò or in the Xfp-resistant Leccino. Moreover, the scoring of the number of wilted twigs over the seasons confirmed the trend. The efficacy of the treatment in the management of olive groves subjected to a high pathogen pressure is highlighted by the yielded a good oil production


Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1264-1270 ◽  
Author(s):  
K. M. Chin ◽  
M. Wirz ◽  
D. Laird

An ascospore germination method was developed and validated to assess the sensitivity of bulk samples of Mycosphaerella fijiensis to trifloxystrobin. Using this method, the sensitivity of 142 ascospore samples from banana plantations not treated with strobilurins was analyzed to establish a baseline of pathogen sensitivity. A bulk method was utilized for monitoring purposes because it avoids potential complications due to the isolation and propagation of single-spore isolates and enables the testing of larger samples. Following intensive use of strobilurins (6 to 11 applications per year) over 4 years, under conditions of high disease pressure and the absence of sanitary measures at a development site in Costa Rica, bulk samples with 50% effective concentration (EC50) resistance factors (RFs) in excess of 500 compared with the mean baseline sensitivity were detected. Single-ascospore isolates derived from spores germinating at the discriminatory dose of 3 μg/ml were also resistant, suggesting that the frequency of resistant individuals in bulk samples could be estimated from the relative numbers of ascospores growing at this dose. The resistance of selected isolates was confirmed in planta. In vitro tests with four resistant and two sensitive single-ascospore isolates collected from different locations and times indicated possible cross-resistance of trifloxystrobin to azoxystrobin, famoxadone, and fenamidone, but not to propiconazole.


2006 ◽  
Vol 188 (23) ◽  
pp. 8013-8021 ◽  
Author(s):  
Alexander Schenk ◽  
Michael Berger ◽  
Lisa M. Keith ◽  
Carol L. Bender ◽  
Georgi Muskhelishvili ◽  
...  

ABSTRACT The phytopathogenic bacterium Pseudomonas syringae pv. glycinea infects soybean plants and causes bacterial blight. In addition to P. syringae, the human pathogen Pseudomonas aeruginosa and the soil bacterium Azotobacter vinelandii produce the exopolysaccharide alginate, a copolymer of d-mannuronic and l-guluronic acids. Alginate production in P. syringae has been associated with increased fitness and virulence in planta. Alginate biosynthesis is tightly controlled by proteins encoded by the algT-muc regulatory gene cluster in P. aeruginosa and A. vinelandii. These genes encode the alternative sigma factor AlgT (σ22), its anti-sigma factors MucA and MucB, MucC, a protein with a controversial function that is absent in P. syringae, and MucD, a periplasmic serine protease and homolog of HtrA in Escherichia coli. We compared an alginate-deficient algT mutant of P. syringae pv. glycinea with an alginate-producing derivative in which algT is intact. The alginate-producing derivative grew significantly slower in vitro growth but showed increased epiphytic fitness and better symptom development in planta. Evaluation of expression levels for algT, mucA, mucB, mucD, and algD, which encodes an alginate biosynthesis gene, showed that mucD transcription is not dependent on AlgT in P. syringae in vitro. Promoter mapping using primer extension experiments confirmed this finding. Results of reverse transcription-PCR demonstrated that algT, mucA, and mucB are cotranscribed as an operon in P. syringae. Northern blot analysis revealed that mucD was expressed as a 1.75-kb monocistronic mRNA in P. syringae.


Sign in / Sign up

Export Citation Format

Share Document