Plant species surplus in recent peri-urban forests: the role of forest connectivity, species’ habitat requirements and dispersal types

2021 ◽  
Vol 30 (2) ◽  
pp. 365-384
Author(s):  
Elena Tello-García ◽  
Nancy Gamboa-Badilla ◽  
Enrique Álvarez ◽  
Laura Fuentes ◽  
Corina Basnou ◽  
...  
2021 ◽  
Author(s):  
Johanna Yletyinen ◽  
George L. W. Perry ◽  
Olivia R. Burge ◽  
Norman W. H. Mason ◽  
Philip Stahlmann‐Brown

2012 ◽  
Vol 279 (1736) ◽  
pp. 2269-2274 ◽  
Author(s):  
Daniel P. Bebber ◽  
Mark A. Carine ◽  
Gerrit Davidse ◽  
David J. Harris ◽  
Elspeth M. Haston ◽  
...  

Discovering biological diversity is a fundamental goal—made urgent by the alarmingly high rate of extinction. We have compiled information from more than 100 000 type specimens to quantify the role of collectors in the discovery of plant diversity. Our results show that more than half of all type specimens were collected by less than 2 per cent of collectors. This highly skewed pattern has persisted through time. We demonstrate that a number of attributes are associated with prolific plant collectors: a long career with increasing productivity and experience in several countries and plant families. These results imply that funding a small number of expert plant collectors in the right geographical locations should be an important element in any effective strategy to find undiscovered plant species and complete the inventory of the world flora.


2022 ◽  
Vol 295 ◽  
pp. 110839
Author(s):  
Pablo Gómez Barreiro ◽  
Efisio Mattana ◽  
David Coleshill ◽  
Elena Castillo-Lorenzo ◽  
Sidi Sanogo ◽  
...  
Keyword(s):  

2013 ◽  
Vol 61 (2) ◽  
pp. 161-172 ◽  
Author(s):  
M. Pál ◽  
O. Gondor ◽  
T. Janda

Low temperature is one of the most important limiting factors for plant growth throughout the world. Exposure to low temperature may cause various phenotypic and physiological symptoms, and may result in oxidative stress, leading to loss of membrane integrity and to the impairment of photosynthesis and general metabolic processes. Salicylic acid (SA), a phenolic compound produced by a wide range of plant species, may participate in many physiological and metabolic reactions in plants. It has been shown that exogenous SA may provide protection against low temperature injury in various plant species, while various stress factors may also modify the synthesis and metabolism of SA. In the present review, recent results on the effects of SA and related compounds in processes leading to acclimation to low temperatures will be discussed.


2021 ◽  
Author(s):  
◽  
Guyo Duba Gufu

<p>Biological invasion by non-native plant species has often been cited as a cause of native biodiversity loss. While the outcome of species invasions depends on interactions between exotic and resident native species, most studies of biological invasions have focused solely on the direct negative impacts of non-indigenous species on native biota. Although investigations of the role of competition in shaping natural plant communities were dominant in the previous generations and are still popular, more recent experimental research has uncovered the striking influence of facilitation on community dynamics. This thesis aims to investigate competitive and facilitative influence of the invasive South African iceplant (Carpobrotus edulis) on Spinifex sericeus, a native foredune grass species, with particular reference to implications of these interactions for dune restoration in New Zealand. It further explores the growth rates, substrate preferences and mating systems of the exotic and native iceplant taxa found in New Zealand. I begin by briefly outlining the influence of competition and facilitation on natural plant communities with reference to the role of facilitation in eco-restoration. I also give a few examples where exotic species have been found to facilitate native ones. Secondly, a neighbour removal experiment was conducted on coastal sand dunes with the main aim of studying the effects of Carpobrotus edulis on establishment of Spinifex sericeus at the foredune region. Finally, I compared the growth rates of the most widely distributed iceplant taxa in New Zealand in different substrates and the breeding systems of the exotic Carpobrotus.  Examples abound in literature of exotic plant species facilitating native ones especially in forestry. In the neighbour removal study, Carpobrotus edulis protected Spinifex seedlings against storm erosion, sandblasting and salt sprays while at the same time suppressing its leaf production. Suppression of Spinifex leaf production was more pronounced at top of the dune where stress elements is presumably more benign. There was no evidence of allelopathic suppression of Spinifex by C. edulis. Only Carpobrotus chilensis displayed some level of substrate preference by putting on relatively lower biomass in gravel. The exotic Carpobrotus spp. put on greater dry matter content than the native Disphyma australe and the Carpobrotus-x-Disphyma hybrid. The hybrid displayed a faster vegetative growth rate whereas D. australe allocated relatively more biomass to the roots than the shoot. Both Carpobrotus spp. are self compatible and highly capable of intrageneric and intergeneric hybridisation. Mass removal of the existing exotic iceplant stands from foredunes along high energy coasts is not advisable as they serve as useful stabilisers. The intergeneric hybrid is sexually sterile with sparsely spread stolons that could allow co-occurrence with other species and therefore is more suitable for foredune stabilisation. However, more research needs to be conducted on the ecology of the intergeneric hybrid.</p>


Sign in / Sign up

Export Citation Format

Share Document