habitat requirements
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 73)

H-INDEX

41
(FIVE YEARS 3)

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2823
Author(s):  
Ryszard Ochyra ◽  
Ilona Jukonienė ◽  
Vítězslav Plášek ◽  
Sigita Sprainaitytė

Splachnum pensylvanicum (Brid.) Grout ex H.A.Crum is recorded for the first time in Lithuania and it is its fourth discovery at a third locality in Europe. It was found for the first time in 2000 in Kamanos mire, the largest peatland complex in the northern part of this East Baltic country. Targeted investigations at this site in 2017 resulted in the discovery of 14 populations and it is apparently the largest and most abundant locality of the species in Europe. Splachnum pensylvanicum is briefly described and illustrated along with some taxonomic notes and a detailed description of its habitat requirements. The global geographical distribution of S. pensylvanicum is reviewed and mapped. It is a Euro-Eastern North American temperate species and deeply penetrates into the Neotropics at montane stations in Venezuela and SE Brazil in South America.


2021 ◽  
Vol 948 (1) ◽  
pp. 012034
Author(s):  
A A Andriyani ◽  
R Nugraha ◽  
S N Marliana

Abstract Tarsius fuscus, whose distribution is limited to the southern part of South Sulawesi, Indonesia, is threatened by poaching and habitat loss, with the latter leading to the disappearance of its sleeping nest locations, despite the species’ wide range of habitat requirements. This study aimed to identify the distribution and characteristics of T. fuscus sleeping nests. Research took place in Bantimurung Bulusaraung National Park primary and secondary forest areas and Hasanuddin University Educational Forest. Sleeping nest locations were identified through vocalizations in the morning (4.30–6.00 am) and direct visual observations. Sleeping nest distribution maps were created using QGIS 3.16. Sleeping nests were found in karst rock shelters, Ficus trees, forest pandanus, and fallen tree debris, at elevations of 68–947 mdpl, 4–42° slopes, temperatures ranging 23.3–29.1°C, and distances to roads and settlements of 21.4–460.3 m and 325.9–1888.5 m, respectively. Tarsius fuscus tended to nest in primary forest rather than secondary forest, although this may also be caused by the larger proportion of primary forest. Protecting both primary and secondary forest is crucial, but particular focus should be given to the latter, owing to its susceptibility to human disturbance.


2021 ◽  
Author(s):  
◽  
Alison Mariah Laferriere

<p>A critical question for ecologists and fisheries managers is what drives the demographic processes that dictate the abundance and size structure of ecologically and commercially important species. Marine Reserves (MRs) provide an opportunity to examine species in the absence of human disturbance (i.e. no fishing) and to investigate how habitat type, quantity and condition contribute to yield large individuals and dense aggregations that are typical of a more natural state. However, an improved understanding of the efficacy of marine reserves requires a robust examination of habitats inside and outside reserves to distinguish any reserve effect from a potential confounding habitat effect. Abalone are a valuable nearshore fishery in many parts of the world and many stocks have been overexploited to the point of collapse. Countries striving to rebuild their abalone stocks are utilizing MRs to support viable populations and focusing on habitat requirements that produce large aggregations and individuals. The abalone commonly referred to as the blackfoot paua (Haliotis iris) is a culturally and ecologically important New Zealand (NZ) species and is the focus of customary, recreational and commercial fisheries. However, the demography and growth rates of paua populations are highly variable, with pockets of “stunted” populations occurring throughout NZ. Density-dependent processes, differential juvenile success, variable habitat quality and fishing pressure have all been suggested to influence the fitness of individuals and the demography of paua populations.  My research utilizes MRs to control for fishing activity and thereby to investigate ecological patterns and the effects of habitat on paua abundance and size variability. The main objectives of this thesis were to quantify the response of paua to MR status, distinguish habitat effect from a reserve effect and understand the contribution of habitat variables on demography and growth. Research was conducted within and surrounding five MRs in central NZ. The habitats in and outside MRs were not significantly different in physical and biogenic characteristics, but paua occurred in significantly greater densities and were significantly larger within four MRs compared with outside, illustrating that marine reserves do afford protection for paua. Paua within MRs were significantly more dense and larger in areas of relatively higher wave exposure and dense macroalgal cover.  Despite protection, paua were found to be undersized or “stunted” at Long Island and Horoirangi MRs. I conducted surveys to evaluate the effect of density and the contribution of habitat variables on paua size at two spatial scales across environmental gradients. To further test the hypothesis that habitat effects growth a 12 month translocation experiment was conducted at Long Island MR. The surveys revealed that environmental gradients exist at small and large scales and explained how paua size varied along these gradients. The habitat variables which supported larger size individuals were consistent across both locations, where paua were significantly larger in areas that were exposed with high algal cover than those at sheltered areas with low algal cover. This result was further confirmed by the translocation experiment which revealed that paua translocated from a stunted environment to a normal environment grew significantly more than conspecifics placed at the stunted environment.  To further explore the response of paua to protection and see if patterns were consistent across bioregions in areas with “normal” size paua I conducted research at the Taputeranga MR on the Wellington South Coast to evaluate juvenile and adult population densities and examine stage-specific habitat requirements. Juvenile paua were found in higher densities at fished sites in areas that were sheltered from wave exposure and dominated by cobbles and boulder fields. Adult paua were found in greater densities and were larger in size within the reserve than outside, which was the opposite finding to the baseline survey illustrating reserve effectiveness. Although within the reserve there were large aggregations and individual adults which may support population reproductive success, juvenile and adult population densities were not correlated. Results from this study indicate that marine reserve implementation does have an impact on adult populations but that habitat is more important for juvenile success.  Although this thesis focused on paua within the scope of protection, MRs are placed in NZ to protect a suite of species. To thoroughly investigate habitats I conducted a rigorous inside-outside habitat analysis utilizing multibeam bathymetric data and video footage from drop camera surveys at Taputeranga MR. Habitat maps produced by NIWA were utilized to plan drop camera sampling locations and 278 drops were conducted across 8 sites associated with TMR. Analysis revealed that habitats within fished and reserve sites were comparable in physical and biogenic habitat quantities, although the reserve had greater topographic relief. However, when examining only a subsample of fished sites there were pronounced habitat differences between in and outside the reserve, where the western fished sites have significantly more rocky reef with greater algal cover than the reserve and eastern sites. These results illustrate the need for quantification of habitat when siting fished (control) areas and conducting inside versus outside reserve comparisons.  This research has determined that MRs do afford protection for paua in central NZ. The differentiation between habitat and reserve effects that I have identified has direct relevance to current and future MRs in NZ and highlights the need for studies to examine habitat effect in MR spatial planning at a global level. Furthermore, this research highlights the importance of considering stage-specific habitat requirements when designing the spatial arrangement of MRs by protecting juvenile habitat as well as adults to increase chances of recovery. These abalone-habitat associations, showing the importance of exposure and macroalgal cover for growth, can be used to assist in management decisions within NZ such as considerations for siting management areas and potential translocations and are directly applicable to abalone conservation, management concerns and recovery efforts across the world.</p>


2021 ◽  
Author(s):  
◽  
Alison Mariah Laferriere

<p>A critical question for ecologists and fisheries managers is what drives the demographic processes that dictate the abundance and size structure of ecologically and commercially important species. Marine Reserves (MRs) provide an opportunity to examine species in the absence of human disturbance (i.e. no fishing) and to investigate how habitat type, quantity and condition contribute to yield large individuals and dense aggregations that are typical of a more natural state. However, an improved understanding of the efficacy of marine reserves requires a robust examination of habitats inside and outside reserves to distinguish any reserve effect from a potential confounding habitat effect. Abalone are a valuable nearshore fishery in many parts of the world and many stocks have been overexploited to the point of collapse. Countries striving to rebuild their abalone stocks are utilizing MRs to support viable populations and focusing on habitat requirements that produce large aggregations and individuals. The abalone commonly referred to as the blackfoot paua (Haliotis iris) is a culturally and ecologically important New Zealand (NZ) species and is the focus of customary, recreational and commercial fisheries. However, the demography and growth rates of paua populations are highly variable, with pockets of “stunted” populations occurring throughout NZ. Density-dependent processes, differential juvenile success, variable habitat quality and fishing pressure have all been suggested to influence the fitness of individuals and the demography of paua populations.  My research utilizes MRs to control for fishing activity and thereby to investigate ecological patterns and the effects of habitat on paua abundance and size variability. The main objectives of this thesis were to quantify the response of paua to MR status, distinguish habitat effect from a reserve effect and understand the contribution of habitat variables on demography and growth. Research was conducted within and surrounding five MRs in central NZ. The habitats in and outside MRs were not significantly different in physical and biogenic characteristics, but paua occurred in significantly greater densities and were significantly larger within four MRs compared with outside, illustrating that marine reserves do afford protection for paua. Paua within MRs were significantly more dense and larger in areas of relatively higher wave exposure and dense macroalgal cover.  Despite protection, paua were found to be undersized or “stunted” at Long Island and Horoirangi MRs. I conducted surveys to evaluate the effect of density and the contribution of habitat variables on paua size at two spatial scales across environmental gradients. To further test the hypothesis that habitat effects growth a 12 month translocation experiment was conducted at Long Island MR. The surveys revealed that environmental gradients exist at small and large scales and explained how paua size varied along these gradients. The habitat variables which supported larger size individuals were consistent across both locations, where paua were significantly larger in areas that were exposed with high algal cover than those at sheltered areas with low algal cover. This result was further confirmed by the translocation experiment which revealed that paua translocated from a stunted environment to a normal environment grew significantly more than conspecifics placed at the stunted environment.  To further explore the response of paua to protection and see if patterns were consistent across bioregions in areas with “normal” size paua I conducted research at the Taputeranga MR on the Wellington South Coast to evaluate juvenile and adult population densities and examine stage-specific habitat requirements. Juvenile paua were found in higher densities at fished sites in areas that were sheltered from wave exposure and dominated by cobbles and boulder fields. Adult paua were found in greater densities and were larger in size within the reserve than outside, which was the opposite finding to the baseline survey illustrating reserve effectiveness. Although within the reserve there were large aggregations and individual adults which may support population reproductive success, juvenile and adult population densities were not correlated. Results from this study indicate that marine reserve implementation does have an impact on adult populations but that habitat is more important for juvenile success.  Although this thesis focused on paua within the scope of protection, MRs are placed in NZ to protect a suite of species. To thoroughly investigate habitats I conducted a rigorous inside-outside habitat analysis utilizing multibeam bathymetric data and video footage from drop camera surveys at Taputeranga MR. Habitat maps produced by NIWA were utilized to plan drop camera sampling locations and 278 drops were conducted across 8 sites associated with TMR. Analysis revealed that habitats within fished and reserve sites were comparable in physical and biogenic habitat quantities, although the reserve had greater topographic relief. However, when examining only a subsample of fished sites there were pronounced habitat differences between in and outside the reserve, where the western fished sites have significantly more rocky reef with greater algal cover than the reserve and eastern sites. These results illustrate the need for quantification of habitat when siting fished (control) areas and conducting inside versus outside reserve comparisons.  This research has determined that MRs do afford protection for paua in central NZ. The differentiation between habitat and reserve effects that I have identified has direct relevance to current and future MRs in NZ and highlights the need for studies to examine habitat effect in MR spatial planning at a global level. Furthermore, this research highlights the importance of considering stage-specific habitat requirements when designing the spatial arrangement of MRs by protecting juvenile habitat as well as adults to increase chances of recovery. These abalone-habitat associations, showing the importance of exposure and macroalgal cover for growth, can be used to assist in management decisions within NZ such as considerations for siting management areas and potential translocations and are directly applicable to abalone conservation, management concerns and recovery efforts across the world.</p>


Oryx ◽  
2021 ◽  
pp. 1-4
Author(s):  
Chela Powell ◽  
Muhammad Iqbal

Abstract The flat-headed cat Prionailurus planiceps is one of the rarest small felids, with little known about its distribution, population status or habitat requirements, largely because of the few records of the species. We report here 11 detections of this Endangered species, recorded during 4 years of camera-trap surveys in a peat-swamp forest on the Kampar Peninsula, Riau province, Sumatra. These are the first records of this species on the Kampar Peninsula, in an area of c. 1,300 km2 of peat-swamp forest comprising four adjacent Ecosystem Restoration Concession licences. All records were near water bodies (mean distance 351 m) in lowland peat-swamp forest. These findings add to the existing knowledge of the species' distribution in Sumatra and confirm its presence in these peat-swamp forests. To inform species conservation management planning for the Kampar Peninsula, further research on this species is required.


2021 ◽  
Vol 9 ◽  
Author(s):  
Giovanni Negro ◽  
Stefano Fenoglio ◽  
Emanuele Quaranta ◽  
Claudio Comoglio ◽  
Isabella Garzia ◽  
...  

The MesoHABitat SImulation Model (MesoHABSIM) is the preferred method to calculate spatio-temporal variation in the fish habitat availability in Italian rivers. With the aim of improving the applicability of the MesoHABSIM approach in the Italian territory, we carried out a systematic review of physical habitat preferences for 31 freshwater fish species and three freshwater lampreys, representing 75% of the total indigenous freshwater fish community of Italy. Information related to suitable ranges of depth, flow velocity, biotic/abiotic substrates, covers/shelters was collected and summarized for two critical life stages (adult and juvenile) and two bioperiods (rearing/growth and spawning). Overall, 250 publications were reviewed, classified as 206 peer-reviewed papers, 20 books, 7 PhD thesis, and 17 grey literature sources. Our analysis revealed substantial deficits of information about habitat requirements for more than 30% of Italian freshwater fish species. This information is particularly scarce for the most threatened endemic species, especially for their most critical bioperiod (i.e., spawning). With the aim of preserving freshwater fish biodiversity as required in the EU Biodiversity Strategy for 2030 (European Commission, 2020), accurate information on physical habitat requirements for spawning is crucial. As an example application of MesoHABSIM, the collected habitat preference information was used to define and apply mesohabitat suitability criteria for one fish species (Telestes muticellus) in a regulated river reach of Argentina Creek (Province of Imperia, Italy). This analysis demonstrates the potential for applying information from the current review to other fish species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jakub Horák

AbstractNiche partitioning among species with virtually the same requirements is a fundamental concept in ecology. Nevertheless, some authors suggest that niches have little involvement in structuring communities. This study was done in the Pardubice Region (Czech Republic) on saproxylic beetles with morphologically similar larvae and very specific requirements, which are related to their obligatory dependence on dead wood material: Cucujus cinnaberinus, Pyrochroa coccinea, and Schizotus pectinicornis. This work was performed on 232 dead wood pieces at the landscape scale over six years. Based on the factors studied, the relationships among these species indicated that their co-occurrence based on species presence and absence was low, which indicated niche partitioning. However, based on analyses of habitat requirements and species composition using observed species abundances, there was no strong evidence for niche partitioning at either studied habitat levels, the tree and the microhabitat. The most likely reasons for the lack of strong niche partitioning were that dead wood is a rich resource and co-occurrence of saproxylic community was not driven by resource competition. This might be consistent with the theory that biodiversity could be controlled by the neutral drift of species abundance. Nevertheless, niche partitioning could be ongoing, meaning that the expanding C. cinnaberinus may have an advantage over the pyrochroids and could dominate in the long term.


Author(s):  
Marius Junker ◽  
Martin Konvicka ◽  
Kamil Zimmermann ◽  
Thomas Schmitt

AbstractIn human-altered landscapes, species with specific habitat requirements tend to persist as metapopulations, forming colonies restricted to patches of suitable habitats, displaying mutually independent within-patch dynamics and interconnected by inter-colony movements of individuals. Despite intuitive appeal and both empirical and analytical evidence, metapopulations of only relatively few butterfly systems had been both monitored for multiple years to quantify metapopulation dynamics, and assayed from the point of view of population genetics. We used allozyme analysis to study the genetic make-up of a metapopulation of a declining and EU-protected butterfly, Euphydryas aurinia, inhabiting humid grasslands in western Czech Republic, and reanalysed previously published demography and dispersal data to interpret the patterns. For 497 colony x year visits to the 97 colonies known at that time, we found annual extinction and colonisation probabilities roughly equal to 4%. The genetic diversity within colonies was intermediate or high for all assessed parameters of population genetic diversity and hence higher than expected for such a habitat specialist species. All the standard genetic diversity measures were positively correlated to adult counts and colony areas, but the correlations were weak and rarely significant, probably due to the rapid within-colony population dynamics. Only very weak correlations applied to larval nests numbers. We conclude that the entirety of colonies forms a well-connected system for their majority. Especially in its core parts, we assume a metapopulation structure with a dynamic equilibrium between local extinction and recolonization. It is vital to conserve in particular these structures of large and interconnected colonies.Implications for insect conservation: Conservation measures should focus on considering more in depth the habitat requirements of E. aurinia for management plans and on stabilisation strategies for colonies, especially of peripheral ones, e.g. by habitat restoration.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 215
Author(s):  
Carl C. Christensen ◽  
Kenneth A. Hayes ◽  
Norine W. Yeung

Freshwater systems are among the most threatened habitats in the world and the biodiversity inhabiting them is disappearing quickly. The Hawaiian Archipelago has a small but highly endemic and threatened group of freshwater snails, with eight species in three families (Neritidae, Lymnaeidae, and Cochliopidae). Anthropogenically mediated habitat modifications (i.e., changes in land and water use) and invasive species (e.g., Euglandina spp., non-native sciomyzids) are among the biggest threats to freshwater snails in Hawaii. Currently, only three species are protected either federally (U.S. Endangered Species Act; Erinna newcombi) or by Hawaii State legislation (Neritona granosa, and Neripteron vespertinum). Here, we review the taxonomic and conservation status of Hawaii’s freshwater snails and describe historical and contemporary impacts to their habitats. We conclude by recommending some basic actions that are needed immediately to conserve these species. Without a full understanding of these species’ identities, distributions, habitat requirements, and threats, many will not survive the next decade, and we will have irretrievably lost more of the unique books from the evolutionary library of life on Earth.


Sign in / Sign up

Export Citation Format

Share Document