scholarly journals Growth-Promoting Treatment Screening for Corticospinal Neurons in Mouse and Man

2020 ◽  
Vol 40 (8) ◽  
pp. 1327-1338
Author(s):  
Nicholas Hanuscheck ◽  
Andrea Schnatz ◽  
Carine Thalman ◽  
Steffen Lerch ◽  
Yvonne Gärtner ◽  
...  

Abstract Neurons of the central nervous system (CNS) that project long axons into the spinal cord have a poor axon regenerative capacity compared to neurons of the peripheral nervous system. The corticospinal tract (CST) is particularly notorious for its poor regeneration. Because of this, traumatic spinal cord injury (SCI) is a devastating condition that remains as yet uncured. Based on our recent observations that direct neuronal interleukin-4 (IL-4) signaling leads to repair of axonal swellings and beneficial effects in neuroinflammation, we hypothesized that IL-4 acts directly on the CST. Here, we developed a tissue culture model for CST regeneration and found that IL-4 promoted new growth cone formation after axon transection. Most importantly, IL-4 directly increased the regenerative capacity of both murine and human CST axons, which corroborates its regenerative effects in CNS damage. Overall, these findings serve as proof-of-concept that our CST regeneration model is suitable for fast screening of new treatments for SCI.

2018 ◽  
Vol 205 (5-6) ◽  
pp. 372-395 ◽  
Author(s):  
Jonathan M. Zuidema ◽  
Ryan J. Gilbert ◽  
Manoj K. Gottipati

Over several decades, biomaterial scientists have developed materials to spur axonal regeneration and limit secondary injury and tested these materials within preclinical animal models. Rarely, though, are astrocytes examined comprehensively when biomaterials are placed into the injury site. Astrocytes support neuronal function in the central nervous system. Following an injury, astrocytes undergo reactive gliosis and create a glial scar. The astrocytic glial scar forms a dense barrier which restricts the extension of regenerating axons through the injury site. However, there are several beneficial effects of the glial scar, including helping to reform the blood-brain barrier, limiting the extent of secondary injury, and supporting the health of regenerating axons near the injury site. This review provides a brief introduction to the role of astrocytes in the spinal cord, discusses astrocyte phenotypic changes that occur following injury, and highlights studies that explored astrocyte changes in response to biomaterials tested within in vitro or in vivo environments. Overall, we suggest that in order to improve biomaterial designs for spinal cord injury applications, investigators should more thoroughly consider the astrocyte response to such designs.


RSC Advances ◽  
2020 ◽  
Vol 10 (32) ◽  
pp. 18677-18686
Author(s):  
Jia Liu ◽  
Kai Li ◽  
Ke Huang ◽  
Chengliang Yang ◽  
Zhipeng Huang ◽  
...  

Spinal cord injury (SCI) is a traumatic injury to the central nervous system (CNS) with a high rate of disability and a low capability of self-recovery.


2006 ◽  
Vol 86 (10) ◽  
pp. 1406-1425 ◽  
Author(s):  
Andrea L Behrman ◽  
Mark G Bowden ◽  
Preeti M Nair

AbstractPhysical rehabilitation after spinal cord injury has been based on the premise that the nervous system is hard-wired and irreparable. Upon this assumption, clinicians have compensated for irremediable sensorimotor deficits using braces, assistive devices, and wheelchairs to achieve upright and seated mobility. Evidence from basic science, however, demonstrates that the central nervous system after injury is malleable and can learn, and this evidence has challenged our current assumptions. The evidence is especially compelling concerning locomotion. The purpose of this perspective article is to summarize the evidence supporting an impending paradigm shift from compensation for deficits to rehabilitation as an agent for walking recovery. A physiologically based approach for the rehabilitation of walking has developed, translating evidence for activity-dependent neuroplasticity after spinal cord injury and the neurobiological control of walking. Advanced by partnerships among neuroscientists, clinicians, and researchers, critical rehabilitation concepts are emerging for activity-based therapy to improve walking recovery, with promising clinical findings.


Spinal Cord ◽  
2020 ◽  
Vol 58 (12) ◽  
pp. 1235-1248
Author(s):  
M. J. Mulcahey ◽  
Linda A. T. Jones ◽  
Frank Rockhold ◽  
Rϋediger Rupp ◽  
John L. K. Kramer ◽  
...  

Development ◽  
1962 ◽  
Vol 10 (2) ◽  
pp. 115-126
Author(s):  
R. T. Sims

The literature on regeneration in the central nervous system of vertebrates has been reviewed exhaustively by Windle (1955, 1956). Adult fish and urodeles reestablish physiological and anatomical continuity of the spinal cord after it has been completely transected while adult anurans (Piatt & Piatt, 1958) and mammals on the whole do not. In all groups of vertebrates regeneration is more successful in the period of early embryonic development, and becomes less so as development proceeds. Experiments designed to investigate the factors responsible for this change demand an animal in which the difference in the regenerative capacity of embryonic and adult form is marked, and all stages of development are easily accessible for operative procedures. These criteria are satisfied by Anura. For this reason regeneration in the anuran central nervous system merits further investigation. After spinal cord transection in urodele larvae, Piatt (1955) found that the Mauthner axons did not regenerate although other axons around them did.


2019 ◽  
Vol 51 (6) ◽  
pp. 555-561 ◽  
Author(s):  
Anhui Wang ◽  
Changshui Xu

Abstract Neuropathic pain is caused by the damage or dysfunction of the nervous system. In many neuropathic pain models, there is an increase in the number of gap junction (GJ) channels, especially the upregulation of the expression of connexin43 (Cx43), leading to the secretion of various types of cytokines and involvement in the formation of neuropathic pain. GJs are widely distributed in mammalian organs and tissues, and Cx43 is the most abundant connexin (Cx) in mammals. Astrocytes are the most abundant glial cell type in the central nervous system (CNS), which mainly express Cx43. More importantly, GJs play an important role in regulating cell metabolism, signaling, and function. Many existing literatures showed that Cx43 plays an important role in the nervous system, especially in the CNS under normal and pathological conditions. However, many internal mechanisms have not yet been thoroughly explored. In this review, we summarized the current understanding of the role and association of Cx and pannexin channels in neuropathic pain, especially after spinal cord injury, as well as some of our own insights and thoughts which suggest that Cx43 may become an emerging therapeutic target for future neuropathic pain, bringing new hope to patients.


2009 ◽  
Vol 4 ◽  
pp. BMI.S2965 ◽  
Author(s):  
F. Gil-Dones ◽  
S. Alonso-Orgaz ◽  
G. Avila ◽  
T. Martin-Rojas ◽  
V. Moral-Darde ◽  
...  

Since the function of the spinal cord depends on the proteins found there, better defing the normal Spinal Cord Proteome is an important and challenging task. Although brain and cerebrospinal fluid samples from patients with different central nervous system (CNS) disorders have been studied, a thorough examination of specific spinal cord proteins and the changes induced by injury or associated to conditions such as neurodegeneration, spasticity and neuropathies has yet to be performed. In the present study, we aimed to describe total protein content in the spinal cord of healthy rats, employing different proteomics tools. Accordingly, we have developed a fast, easy, and reproducible sequential protocol for protein extraction from rat spinal cords. We employed conventional two dimensional electrophoresis (2DE) in different pH ranges (eg. 4–7, 3–11 NL) combined with identification by mass spectrometry (MALDI-TOF/TOF), as well as first dimension protein separation combined with Liquid Chromatography Mass Spectrometry/Mass Spectrometry (LC-MS/MS) to maximise the benefits of this technology. The value of these techniques is demonstrated here by the identification of several proteins known to be associated with neuroglial structures, neurotransmission, cell survival and nerve growth in the central nervous system. Furthermore this study identified many spinal proteins that have not previously been described in the literature and which may play an important role as either sensitive biomarkers of dysfunction or of recovery after Spinal Cord Injury.


2016 ◽  
Vol 121 (2) ◽  
pp. 545-557 ◽  
Author(s):  
Dragana Komnenov ◽  
Julia Z. Solarewicz ◽  
Fareeza Afzal ◽  
Kwaku D. Nantwi ◽  
Donald M. Kuhn ◽  
...  

We examined the effect of repeated daily exposure to intermittent hypoxia (IH) on the recovery of respiratory and limb motor function in mice genetically depleted of central nervous system serotonin. Electroencephalography, diaphragm activity, ventilation, core body temperature, and limb mobility were measured in spontaneously breathing wild-type (Tph2+/+) and tryptophan hydroxylase 2 knockout (Tph2−/−) mice. Following a C2 hemisection, the mice were exposed daily to IH (i.e., twelve 4-min episodes of 10% oxygen interspersed with 4-min normoxic periods followed by a 90-min end-recovery period) or normoxia (i.e., sham protocol, 21% oxygen) for 10 consecutive days. Diaphragm activity recovered to prehemisection levels in the Tph2+/+ and Tph2−/− mice following exposure to IH but not normoxia [Tph2+/+ 1.3 ± 0.2 (SE) vs. 0.3 ± 0.2; Tph2−/− 1.06 ± 0.1 vs. 0.3 ± 0.1, standardized to prehemisection values, P < 0.01]. Likewise, recovery of tidal volume and breathing frequency was evident, although breathing frequency values did not return to prehemisection levels within the time frame of the protocol. Partial recovery of limb motor function was also evident 2 wk after spinal cord hemisection. However, recovery was not dependent on IH or the presence of serotonin in the central nervous system. We conclude that IH promotes recovery of respiratory function but not basic motor tasks. Moreover, we conclude that spontaneous or treatment-induced recovery of respiratory and motor limb function is not dependent on serotonin in the central nervous system in a mouse model of spinal cord injury.


2021 ◽  
Author(s):  
Daniel J. Hellenbrand ◽  
Rylie M. Roddick ◽  
Sophia M. Mauney ◽  
Ryan T. Elder ◽  
Carolyn N. Morehouse ◽  
...  

In skin wound healing the injured tissue goes through a normal progression, inflammation subsides and remodeling occurs. However after spinal cord injury inflammation persists and there is less progression into a regenerative/rebuilding phase. This inflammatory process after spinal cord injury is orchestrated by many cell types and numerous cytokines. Although there are several positive effects of inflammation after spinal cord injury, such as the removal of debris, the substantial upregulation of immune cells has been shown to contribute to neural degeneration. Several chemokines and cytokines including many interleukins are involved in guiding these immune cells to the lesion. While there are many inflammatory cytokines acting on these immune cells after SCI, there are also several anti-inflammatory interleukins that have shown beneficial effects in reducing inflammation. After SCI in a rat model, interleukin-10 and interleukin-19 have been shown to downregulate the synthesis of pro-inflammatory species including interleukin-1β and tumor necrosis factor-α, which resulted in a significant improvement in rat hind limb function. Also, interleukin-4 and interleukin-13 are related anti-inflammatory cytokines that regulate many aspects of inflammation and have also been shown to induce alternative macrophage activation. The differing and complex roles interleukins play, highlight their importance on the inflammation that persists after spinal cord injury. Here we review both the positive effects and negative effects that interleukins have during the multifaceted inflammation process following spinal cord injury.


Sign in / Sign up

Export Citation Format

Share Document