immune cells
Recently Published Documents


TOTAL DOCUMENTS

9899
(FIVE YEARS 5070)

H-INDEX

152
(FIVE YEARS 29)

2024 ◽  
Vol 84 ◽  
Author(s):  
M. Ahmad ◽  
Y. Hameed ◽  
M. Khan ◽  
M Usman ◽  
A. Rehman ◽  
...  

Abstract Cancer is a fatal malignancy and its increasing worldwide prevalence demands the discovery of more sensitive and reliable molecular biomarkers. To investigate the GINS1 expression level and its prognostic value in distinct human cancers using a series of multi-layered in silico approach may help to establish it as a potential shared diagnostic and prognostic biomarker of different cancer subtypes. The GINS1 mRNA, protein expression, and promoter methylation were analyzed using UALCAN and Human Protein Atlas (HPA), while mRNA expression was further validated via GENT2. The potential prognostic values of GINS1 were evaluated through KM plotter. Then, cBioPortal was utilized to examine the GINS1-related genetic mutations and copy number variations (CNVs), while pathway enrichment analysis was performed using DAVID. Moreover, a correlational analysis between GINS1 expression and CD8+ T immune cells and a the construction of gene-drug interaction network was performed using TIMER, CDT, and Cytoscape. The GINS1 was found down-regulated in a single subtypes of human cancer while commonly up-regulated in 23 different other subtypes. The up-regulation of GINS1 was significantly correlated with the poor overall survival (OS) of Liver Hepatocellular Carcinoma (LIHC), Lung Adenocarcinoma (LUAD), and Kidney renal clear cell carcinoma (KIRC). The GINS1 was also found up-regulated in LIHC, LUAD, and KIRC patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of GINS1 in two diverse pathways, while few interesting correlations were also documented between GINS1 expression and its promoter methylation level, CD8+ T immune cells level, and CNVs. Moreover, we also predicted few drugs that could be used in the treatment of LIHC, LUAD, and KIRC by regulating the GINS1 expression. The expression profiling of GINS1 in the current study has suggested it a novel shared diagnostic and prognostic biomarker of LIHC, LUAD, and KIRC.


2022 ◽  
Vol 3 (1) ◽  
pp. 101052
Author(s):  
Keiko Sakamoto ◽  
Shubham Goel ◽  
Atsuko Funakoshi ◽  
Tetsuya Honda ◽  
Keisuke Nagao

2022 ◽  
Vol 10 (1) ◽  
pp. 007-010
Author(s):  
Michael John Dochniak

Vitamins are essential for cellular growth and nutrition. The bioavailability of vitamins may affect the immune system’s ability to fight cancer. Research efforts investigate the complex interplay of vitamins, immune cells, and cancer cells to improve treatment outcomes. This review explores managing the intake of vitamin A, B, C, D, E, and K to enhance the efficacy of forced-atopy cancer immunotherapy.


2022 ◽  
Author(s):  
Jagannath Padmanabhan ◽  
Kellen Chen ◽  
Dharshan Sivaraj ◽  
Britta A Kuehlmann ◽  
Clark A Bonham ◽  
...  

For decades, it has been assumed that the foreign body response (FBR) to biomedical implants is primarily a reaction to the chemical and mechanical properties of the implant. Here, we show for the first time that a third independent variable, allometric tissue-scale forces (which increase exponentially with body size), can drive the biology of FBR in humans. We first demonstrate that pathological FBR in humans is mediated by immune cell-specific Rac2 mechanotransduction signaling, independent of implant chemistry or mechanical properties. We then show that mice, which are typically poor models of human FBR, can be made to induce a strikingly human-like pathological FBR by altering these extrinsic tissue forces. Altering these extrinsic tissue forces alone activates Rac2 signaling in a unique subpopulation of immune cells and results in a human-like pathological FBR at the molecular, cellular, and local tissue levels. Finally, we demonstrate that blocking Rac2 signaling negates the effect of increased tissue forces, dramatically reducing FBR. These findings highlight a previously unsuspected mechanism for pathological FBR and may have profound implications for the design and safety of all implantable devices in humans.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 164
Author(s):  
Hannah K. Fitzgerald ◽  
Sinead A. O’Rourke ◽  
Eva Desmond ◽  
Nuno G. B. Neto ◽  
Michael G. Monaghan ◽  
...  

The extracellular parasite and causative agent of African sleeping sickness Trypanosoma brucei (T. brucei) has evolved a number of strategies to avoid immune detection in the host. One recently described mechanism involves the conversion of host-derived amino acids to aromatic ketoacids, which are detected at relatively high concentrations in the bloodstream of infected individuals. These ketoacids have been shown to directly suppress inflammatory responses in murine immune cells, as well as acting as potent inducers of the stress response enzyme, heme oxygenase 1 (HO-1), which has proven anti-inflammatory properties. The aim of this study was to investigate the immunomodulatory properties of the T. brucei-derived ketoacids in primary human immune cells and further examine their potential as a therapy for inflammatory diseases. We report that the T. brucei-derived ketoacids, indole pyruvate (IP) and hydroxyphenylpyruvate (HPP), induce HO-1 expression through Nrf2 activation in human dendritic cells (DC). They also limit DC maturation and suppress the production of pro-inflammatory cytokines, which, in turn, leads to a reduced capacity to differentiate adaptive CD4+ T cells. Furthermore, the ketoacids are capable of modulating DC cellular metabolism and suppressing the inflammatory profile of cells isolated from patients with inflammatory bowel disease. This study therefore not only provides further evidence of the immune-evasion mechanisms employed by T. brucei, but also supports further exploration of this new class of HO-1 inducers as potential therapeutics for the treatment of inflammatory conditions.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiangling Li ◽  
Yanjun Guan ◽  
Chaochao Li ◽  
Tieyuan Zhang ◽  
Fanqi Meng ◽  
...  

AbstractVarious immune cells and cytokines are present in the aftermath of peripheral nerve injuries (PNI), and coordination of the local inflammatory response is of great significance for the recovery of PNI. Mesenchymal stem cells (MSCs) exhibit immunosuppressive and anti-inflammatory abilities which can accelerate tissue regeneration and attenuate inflammation, but the role of MSCs in the regulation of the local inflammatory microenvironment after PNI has not been widely studied. Here, we summarize the known interactions between MSCs, immune cells, and inflammatory cytokines following PNI with a focus on the immunosuppressive role of MSCs. We also discuss the immunomodulatory potential of MSC-derived extracellular vesicles as a new cell-free treatment for PNI.


ACS Sensors ◽  
2022 ◽  
Author(s):  
Francisco Fueyo-González ◽  
Laura Espinar-Barranco ◽  
Rosario Herranz ◽  
Ibon Alkorta ◽  
Luis Crovetto ◽  
...  
Keyword(s):  

2022 ◽  
Vol 2022 ◽  
pp. 1-23
Author(s):  
Qiaoqiao Li ◽  
Xueping Gao ◽  
Xueshan Luo ◽  
Qingrui Wu ◽  
Jintao He ◽  
...  

Cardioembolic stroke (CS) is the most common type of ischemic stroke in the clinic, leading to high morbidity and mortality worldwide. Although many studies have been conducted, the molecular mechanism underlying CS has not been fully grasped. This study was aimed at exploring the molecular mechanism of CS using comprehensive bioinformatics analysis and providing new insights into the pathophysiology of CS. We downloaded the public datasets GSE58294 and GSE16561. Differentially expressed genes (DEGs) were screened via the limma package using R software. CIBERSORT was used to estimate the proportions of 22 immune cells based on the gene expression profiling of CS patients. Using weighted gene correlation network analysis (WGCNA) to cluster the genes into different modules and detect relationships between modules and immune cell types, hub genes were identified based on the intersection of the protein-protein interaction (PPI) network analysis and WGCNA, and their clinical significance was then verified using another independent dataset GSE16561. Totally, 319 genes were identified as DEGs and 5413 genes were clustered into nine modules using WGCNA. The blue module, with the highest correlation coefficient, was identified as the key module associated with stroke, neutrophils, and B cells naïve. Based on the PPI analysis and WGCNA, five genes (MCEMP1, CLEC4D, GPR97, TSPAN14, and FPR2) were identified as hub genes. Correlation analysis indicated that hub genes had general association with infiltration-related immune cells. ROC analysis also showed they had potential clinical significance. The results were verified using another dataset, which were consistent with our analysis. Five crucial genes determined using integrative bioinformatics analysis might play significant roles in the pathophysiological mechanism in CS and be potential targets for pharmaceutic therapies.


2022 ◽  
Vol 2 ◽  
Author(s):  
Oleh Andrukhov ◽  
Alice Blufstein ◽  
Christian Behm

Antimicrobial defense is an essential component of host-microbial homeostasis and contributes substantially to oral health maintenance. Dental mesenchymal stromal cells (MSCs) possess multilineage differentiation potential, immunomodulatory properties and play an important role in various processes like regeneration and disease progression. Recent studies show that dental MSCs might also be involved in antibacterial defense. This occurs by producing antimicrobial peptides or attracting professional phagocytic immune cells and modulating their activity. The production of antimicrobial peptides and immunomodulatory abilities of dental MSCs are enhanced by an inflammatory environment and influenced by vitamin D3. Antimicrobial peptides also have anti-inflammatory effects in dental MSCs and improve their differentiation potential. Augmentation of antibacterial efficiency of dental MSCs could broaden their clinical application in dentistry.


Sign in / Sign up

Export Citation Format

Share Document