scholarly journals Diagonal groups and arcs over groups

Author(s):  
R. A. Bailey ◽  
Peter J. Cameron ◽  
Michael Kinyon ◽  
Cheryl E. Praeger

AbstractIn an earlier paper by three of the present authors and Csaba Schneider, it was shown that, for $$m\ge 2$$ m ≥ 2 , a set of $$m+1$$ m + 1 partitions of a set $$\Omega $$ Ω , any m of which are the minimal non-trivial elements of a Cartesian lattice, either form a Latin square (if $$m=2$$ m = 2 ), or generate a join-semilattice of dimension m associated with a diagonal group over a base group G. In this paper we investigate what happens if we have $$m+r$$ m + r partitions with $$r\ge 2$$ r ≥ 2 , any m of which are minimal elements of a Cartesian lattice. If $$m=2$$ m = 2 , this is just a set of mutually orthogonal Latin squares. We consider the case where all these squares are isotopic to Cayley tables of groups, and give an example to show the groups need not be all isomorphic. For $$m>2$$ m > 2 , things are more restricted. Any $$m+1$$ m + 1 of the partitions generate a join-semilattice admitting a diagonal group over a group G. It may be that the groups are all isomorphic, though we cannot prove this. Under an extra hypothesis, we show that G must be abelian and must have three fixed-point-free automorphisms whose product is the identity. (We describe explicitly all abelian groups having such automorphisms.) Under this hypothesis, the structure gives an orthogonal array, and conversely in some cases. If the group is cyclic of prime order p, then the structure corresponds exactly to an arc of cardinality $$m+r$$ m + r in the $$(m-1)$$ ( m - 1 ) -dimensional projective space over the field with p elements, so all known results about arcs are applicable. More generally, arcs over a finite field of order q give examples where G is the elementary abelian group of order q. These examples can be lifted to non-elementary abelian groups using p-adic techniques.

10.37236/1919 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Ian M. Wanless

Atomic latin squares have indivisible structure which mimics that of the cyclic groups of prime order. They are related to perfect $1$-factorisations of complete bipartite graphs. Only one example of an atomic latin square of a composite order (namely 27) was previously known. We show that this one example can be generated by an established method of constructing latin squares using cyclotomic orthomorphisms in finite fields. The same method is used in this paper to construct atomic latin squares of composite orders 25, 49, 121, 125, 289, 361, 625, 841, 1369, 1849, 2809, 4489, 24649 and 39601. It is also used to construct many new atomic latin squares of prime order and perfect $1$-factorisations of the complete graph $K_{q+1}$ for many prime powers $q$. As a result, existence of such a factorisation is shown for the first time for $q$ in $\big\{$529, 2809, 4489, 6889, 11449, 11881, 15625, 22201, 24389, 24649, 26569, 29929, 32041, 38809, 44521, 50653, 51529, 52441, 63001, 72361, 76729, 78125, 79507, 103823, 148877, 161051, 205379, 226981, 300763, 357911, 371293, 493039, 571787$\big\}$. We show that latin squares built by the 'orthomorphism method' have large automorphism groups and we discuss conditions under which different orthomorphisms produce isomorphic latin squares. We also introduce an invariant called the train of a latin square, which proves to be useful for distinguishing non-isomorphic examples.


1988 ◽  
Vol 31 (4) ◽  
pp. 409-413 ◽  
Author(s):  
E. T. Parker ◽  
Lawrence Somer

AbstractLetn = 4t+- 2, where the integert ≧ 2. A necessary condition is given for a particular Latin squareLof ordernto have a complete set ofn — 2mutually orthogonal Latin squares, each orthogonal toL.This condition extends constraints due to Mann concerning the existence of a Latin square orthogonal to a given Latin square.


2018 ◽  
Vol 7 (1-2) ◽  
pp. 77-93
Author(s):  
J. A. Saka ◽  
O. O. Oyadare

This paper presents a general method of constructing a complete set of Mutually Orthogonal Latin Squares (MOLS) of the order of any prime, via the use of generating functions dened on the nite eld of this order. Apart from using the generating function to get a complete set of Mutually Orthogonal Latin Squares, the studies of the generating functions opens up the possibility of getting at the deep structural properties of MOLS. Copious examples were given for detailed illustrations.


10.37236/8020 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Anthony B. Evans ◽  
Gage N. Martin ◽  
Kaethe Minden ◽  
M. A. Ollis

Regarding neighbor balance, we consider natural generalizations of $D$-complete Latin squares and Vatican squares from the finite to the infinite. We show that if $G$ is an infinite abelian group with $|G|$-many square elements, then it is possible to permute the rows and columns of the Cayley table to create an infinite Vatican square. We also construct a Vatican square of any given infinite order that is not obtainable by permuting the rows and columns of a Cayley table.  Regarding orthogonality, we show that every infinite group $G$ has a set of $|G|$ mutually orthogonal orthomorphisms and hence there is a set of $|G|$ mutually orthogonal Latin squares based on $G$. We show that an infinite group $G$ with $|G|$-many square elements has a strong complete mapping; and, with some possible exceptions, infinite abelian groups have a strong complete mapping.


10.37236/1629 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Ian M. Wanless

We define a $k$-plex to be a partial latin square of order $n$ containing $kn$ entries such that exactly $k$ entries lie in each row and column and each of $n$ symbols occurs exactly $k$ times. A transversal of a latin square corresponds to the case $k=1$. For $k>n/4$ we prove that not all $k$-plexes are completable to latin squares. Certain latin squares, including the Cayley tables of many groups, are shown to contain no $(2c+1)$-plex for any integer $c$. However, Cayley tables of soluble groups have a $2c$-plex for each possible $c$. We conjecture that this is true for all latin squares and confirm this for orders $n\leq8$. Finally, we demonstrate the existence of indivisible $k$-plexes, meaning that they contain no $c$-plex for $1\leq c < k$.


10.37236/2269 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Daniel Kotlar

Expressions involving the product of the permanent with the $(n-1)^{st}$ power of the determinant of a matrix of indeterminates, and of (0,1)-matrices, are shown to be related to an extension to odd dimensions of the Alon-Tarsi Latin Square Conjecture, first stated by Zappa. These yield an alternative proof of a theorem of Drisko, stating that the extended conjecture holds for Latin squares of odd prime order. An identity involving an alternating sum of permanents of (0,1)-matrices is obtained.


10.37236/8542 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
M. A. Ollis ◽  
Christopher R. Tripp

We construct sequencings for many groups that are a semi-direct product of an odd-order abelian group and a cyclic group of odd prime order.  It follows from these constructions that there is a group-based complete Latin square of order $n$ if and only if $n \in \{ 1,2,4\}$ or there is a non-abelian group of order $n$.


10.37236/1464 ◽  
1999 ◽  
Vol 6 (1) ◽  
Author(s):  
Leonard H. Soicher

Let $k\ge0$ and $n\ge2$ be integers. A SOMA, or more specifically a SOMA$(k,n)$, is an $n\times n$ array $A$, whose entries are $k$-subsets of a $kn$-set $\Omega$, such that each element of $\Omega$ occurs exactly once in each row and exactly once in each column of $A$, and no 2-subset of $\Omega$ is contained in more than one entry of $A$. A SOMA$(k,n)$ can be constructed by superposing $k$ mutually orthogonal Latin squares of order $n$ with pairwise disjoint symbol-sets, and so a SOMA$(k,n)$ can be seen as a generalization of $k$ mutually orthogonal Latin squares of order $n$. In this paper we first study the structure of SOMAs, concentrating on how SOMAs can decompose. We then report on the use of computational group theory and graph theory in the discovery and classification of SOMAs. In particular, we discover and classify SOMA$(3,10)$s with certain properties, and discover two SOMA$(4,14)$s (SOMAs with these parameters were previously unknown to exist). Some of the newly discovered SOMA$(3,10)$s come from superposing a Latin square of order 10 on a SOMA$(2,10)$.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 285
Author(s):  
Laura M. Johnson ◽  
Stephanie Perkins

This communication provides a discussion of a scheme originally proposed by Falcón in a paper entitled “Latin squares associated to principal autotopisms of long cycles. Applications in cryptography”. Falcón outlines the protocol for a cryptographical scheme that uses the F-critical sets associated with a particular Latin square to generate access levels for participants of the scheme. Accompanying the scheme is an example, which applies the protocol to a particular Latin square of order six. Exploration of the example itself, revealed some interesting observations about both the structure of the Latin square itself and the autotopisms associated with the Latin square. These observations give rise to necessary conditions for the generation of the F-critical sets associated with certain autotopisms of the given Latin square. The communication culminates with a table which outlines the various access levels for the given Latin square in accordance with the scheme detailed by Falcón.


Sign in / Sign up

Export Citation Format

Share Document