complete bipartite graphs
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 76)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Asim Khurshid ◽  
Muhammad Salman ◽  
Masood Ur Rehman ◽  
Mohammad Tariq Rahim

In this study, we investigate the Laplacian degree product spectrum and corresponding energy of four families of graphs, namely, complete graphs, complete bipartite graphs, friendship graphs, and corona products of 3 and 4 cycles with a null graph.


2022 ◽  
Vol 7 (4) ◽  
pp. 5790-5807
Author(s):  
Imran Javaid ◽  
◽  
Shahroz Ali ◽  
Shahid Ur Rehman ◽  
Aqsa Shah

<abstract><p>In this paper, we investigate the theory of rough set to study graphs using the concept of orbits. Rough sets are based on a clustering criterion and we use the idea of similarity of vertices under automorphism as a criterion. We introduce indiscernibility relation in terms of orbits and prove necessary and sufficient conditions under which the indiscernibility partitions remain the same when associated with different attribute sets. We show that automorphisms of the graph $ \mathcal{G} $ preserve the indiscernibility partitions. Further, we prove that for any graph $ \mathcal{G} $ with $ k $ orbits, any reduct $ \mathcal{R} $ consists of one element from $ k-1 $ orbits of the graph. We also study the rough membership functions for paths, cycles, complete and complete bipartite graphs. Moreover, we introduce essential sets and discernibility matrices induced by orbits of graphs and study their relationship. We also prove that every essential set consists of union of any two orbits of the graph.</p></abstract>


2021 ◽  
Vol 37 ◽  
pp. 747-757
Author(s):  
Amy Yielding ◽  
Taylor Hunt ◽  
Joel Jacobs ◽  
Jazmine Juarez ◽  
Taylor Rhoton ◽  
...  

In this paper, we investigate inertia sets of simple connected undirected graphs. The main focus is on the shape of their corresponding inertia tables, in particular whether or not they are trapezoidal. This paper introduces a special family of graphs created from any given graph, $G$, coined semicliqued graphs and denoted $\widetilde{K}G$. We establish the minimum rank and inertia sets of some $\widetilde{K}G$ in relation to the original graph $G$. For special classes of graphs, $G$, it can be shown that the inertia set of $G$ is a subset of the inertia set of $\widetilde{K}G$. We provide the inertia sets for semicliqued cycles, paths, stars, complete graphs, and for a class of trees. In addition, we establish an inertia set bound for semicliqued complete bipartite graphs.


2021 ◽  
Vol 38 (1) ◽  
Author(s):  
Beáta Bényi

AbstractIn this note we prove a new characterization of the derangement sets of Ferrers graphs and present a bijection between the derangement sets and $$F_{\lambda }$$ F λ -Callan sequences. In particular, this connection reveals that the boolean numbers of the complete bipartite graphs are the D-relatives of poly-Bernoulli numbers.


10.37236/9849 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Preston Cranford ◽  
Anton Dochtermann ◽  
Evan Haithcock ◽  
Joshua Marsh ◽  
Suho Oh ◽  
...  

A well-known conjecture of Richard Stanley posits that the $h$-vector of the independence complex of a matroid is a pure ${\mathcal O}$-sequence. The conjecture has been established for various classes but is open for graphic matroids. A biconed graph is a graph with two specified 'coning vertices', such that every vertex of the graph is connected to at least one coning vertex. The class of biconed graphs includes coned graphs, Ferrers graphs, and complete multipartite graphs.  We study the $h$-vectors of graphic matroids arising from biconed graphs, providing a combinatorial interpretation of their entries in terms of '$2$-weighted forests' of the underlying graph. This generalizes constructions of Kook and Lee who studied the Möbius coinvariant (the last nonzero entry of the $h$-vector) of graphic matroids of complete bipartite graphs. We show that allowing for partially $2$-weighted forests gives rise to a pure multicomplex whose face count recovers the $h$-vector, establishing Stanley's conjecture for this class of matroids.  We also discuss how our constructions relate to a combinatorial strengthening of Stanley's Conjecture (due to Klee and Samper) for this class of matroids.


2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Stijn Cambie

In this paper, we prove a collection of results on graphical indices. We determine the extremal graphs attaining the maximal generalized Wiener index (e.g. the hyper-Wiener index) among all graphs with given matching number or independence number. This generalizes some work of Dankelmann, as well as some work of Chung. We also show alternative proofs for two recents results on maximizing the Wiener index and external Wiener index by deriving it from earlier results. We end with proving two conjectures. We prove that the maximum for the difference of the Wiener index and the eccentricity is attained by the path if the order $n$ is at least $9$ and that the maximum weighted Szeged index of graphs of given order is attained by the balanced complete bipartite graphs.


Author(s):  
Bünyamin Şahin ◽  
Abdulgani Şahi̇n

Bonchev and Trinajstic defined two distance based entropy measures to measure the molecular branching of molecular graphs in 1977 [Information theory, distance matrix, and molecular branching, J. Chem. Phys., 38 (1977), 4517&ndash;4533]. In this paper we use these entropy measures which are based on distance matrices of graphs. The first one is based on distribution of distances in distance matrix and the second one is based on distribution of distances in upper triangular submatrix. We obtain the two entropy measures of paths, stars, complete graphs, cycles and complete bipartite graphs. Finally we obtain the minimal trees with respect to these entropy measures with fixed diameter.


2021 ◽  
Vol 344 (10) ◽  
pp. 112531
Author(s):  
Michael Tait ◽  
Craig Timmons

Sign in / Sign up

Export Citation Format

Share Document