scholarly journals Automated patch assessment for program repair at scale

2021 ◽  
Vol 26 (2) ◽  
Author(s):  
He Ye ◽  
Matias Martinez ◽  
Martin Monperrus

AbstractIn this paper, we do automatic correctness assessment for patches generated by program repair systems. We consider the human-written patch as ground truth oracle and randomly generate tests based on it, a technique proposed by Shamshiri et al., called Random testing with Ground Truth (RGT) in this paper. We build a curated dataset of 638 patches for Defects4J generated by 14 state-of-the-art repair systems, we evaluate automated patch assessment on this dataset. The results of this study are novel and significant: First, we improve the state of the art performance of automatic patch assessment with RGT by 190% by improving the oracle; Second, we show that RGT is reliable enough to help scientists to do overfitting analysis when they evaluate program repair systems; Third, we improve the external validity of the program repair knowledge with the largest study ever.

2020 ◽  
Vol 34 (07) ◽  
pp. 12637-12644 ◽  
Author(s):  
Yibo Yang ◽  
Hongyang Li ◽  
Xia Li ◽  
Qijie Zhao ◽  
Jianlong Wu ◽  
...  

The panoptic segmentation task requires a unified result from semantic and instance segmentation outputs that may contain overlaps. However, current studies widely ignore modeling overlaps. In this study, we aim to model overlap relations among instances and resolve them for panoptic segmentation. Inspired by scene graph representation, we formulate the overlapping problem as a simplified case, named scene overlap graph. We leverage each object's category, geometry and appearance features to perform relational embedding, and output a relation matrix that encodes overlap relations. In order to overcome the lack of supervision, we introduce a differentiable module to resolve the overlap between any pair of instances. The mask logits after removing overlaps are fed into per-pixel instance id classification, which leverages the panoptic supervision to assist in the modeling of overlap relations. Besides, we generate an approximate ground truth of overlap relations as the weak supervision, to quantify the accuracy of overlap relations predicted by our method. Experiments on COCO and Cityscapes demonstrate that our method is able to accurately predict overlap relations, and outperform the state-of-the-art performance for panoptic segmentation. Our method also won the Innovation Award in COCO 2019 challenge.


2020 ◽  
Author(s):  
Fei Qi ◽  
Zhaohui Xia ◽  
Gaoyang Tang ◽  
Hang Yang ◽  
Yu Song ◽  
...  

As an emerging field, Automated Machine Learning (AutoML) aims to reduce or eliminate manual operations that require expertise in machine learning. In this paper, a graph-based architecture is employed to represent flexible combinations of ML models, which provides a large searching space compared to tree-based and stacking-based architectures. Based on this, an evolutionary algorithm is proposed to search for the best architecture, where the mutation and heredity operators are the key for architecture evolution. With Bayesian hyper-parameter optimization, the proposed approach can automate the workflow of machine learning. On the PMLB dataset, the proposed approach shows the state-of-the-art performance compared with TPOT, Autostacker, and auto-sklearn. Some of the optimized models are with complex structures which are difficult to obtain in manual design.


Author(s):  
Anass Nouri ◽  
Christophe Charrier ◽  
Olivier Lezoray

This chapter concerns the visual saliency and the perceptual quality assessment of 3D meshes. Firstly, the chapter proposes a definition of visual saliency and describes the state-of-the-art methods for its detection on 3D mesh surfaces. A focus is made on a recent model of visual saliency detection for 3D colored and non-colored meshes whose results are compared with a ground-truth saliency as well as with the literature's methods. Since this model is able to estimate the visual saliency on 3D colored meshes, named colorimetric saliency, a description of the construction of a 3D colored mesh database that was used to assess its relevance is presented. The authors also describe three applications of the detailed model that respond to the problems of viewpoint selection, adaptive simplification and adaptive smoothing. Secondly, two perceptual quality assessment metrics for 3D non-colored meshes are described, analyzed, and compared with the state-of-the-art approaches.


2019 ◽  
Vol 4 (5) ◽  
pp. 1158-1163 ◽  
Author(s):  
Stepan A. Romanov ◽  
Ali E. Aliev ◽  
Boris V. Fine ◽  
Anton S. Anisimov ◽  
Albert G. Nasibulin

We present the state-of-the-art performance of air-coupled thermophones made of thin, freestanding films of randomly oriented single-walled carbon nanotubes (SWCNTs).


2020 ◽  
Vol 34 (07) ◽  
pp. 11394-11401
Author(s):  
Shuzhao Li ◽  
Huimin Yu ◽  
Haoji Hu

In this paper, we propose an Appearance and Motion Enhancement Model (AMEM) for video-based person re-identification to enrich the two kinds of information contained in the backbone network in a more interpretable way. Concretely, human attribute recognition under the supervision of pseudo labels is exploited in an Appearance Enhancement Module (AEM) to help enrich the appearance and semantic information. A Motion Enhancement Module (MEM) is designed to capture the identity-discriminative walking patterns through predicting future frames. Despite a complex model with several auxiliary modules during training, only the backbone model plus two small branches are kept for similarity evaluation which constitute a simple but effective final model. Extensive experiments conducted on three popular video-based person ReID benchmarks demonstrate the effectiveness of our proposed model and the state-of-the-art performance compared with existing methods.


Author(s):  
Zhizheng Zhang ◽  
Cuiling Lan ◽  
Wenjun Zeng ◽  
Zhibo Chen ◽  
Shih-Fu Chang

Few-shot image classification learns to recognize new categories from limited labelled data. Metric learning based approaches have been widely investigated, where a query sample is classified by finding the nearest prototype from the support set based on their feature similarities. A neural network has different uncertainties on its calculated similarities of different pairs. Understanding and modeling the uncertainty on the similarity could promote the exploitation of limited samples in few-shot optimization. In this work, we propose Uncertainty-Aware Few-Shot framework for image classification by modeling uncertainty of the similarities of query-support pairs and performing uncertainty-aware optimization. Particularly, we exploit such uncertainty by converting observed similarities to probabilistic representations and incorporate them to the loss for more effective optimization. In order to jointly consider the similarities between a query and the prototypes in a support set, a graph-based model is utilized to estimate the uncertainty of the pairs. Extensive experiments show our proposed method brings significant improvements on top of a strong baseline and achieves the state-of-the-art performance.


Author(s):  
Jin Chen ◽  
Defu Lian ◽  
Kai Zheng

One-class collaborative filtering (OCCF) problems are vital in many applications of recommender systems, such as news and music recommendation, but suffers from sparsity issues and lacks negative examples. To address this problem, the state-of-the-arts assigned smaller weights to unobserved samples and performed low-rank approximation. However, the ground-truth ratings of unobserved samples are usually set to zero but ill-defined. In this paper, we propose a ranking-based implicit regularizer and provide a new general framework for OCCF, to avert the ground-truth ratings of unobserved samples. We then exploit it to regularize a ranking-based loss function and design efficient optimization algorithms to learn model parameters. Finally, we evaluate them on three realworld datasets. The results show that the proposed regularizer significantly improves ranking-based algorithms and that the proposed framework outperforms the state-of-the-art OCCF algorithms.


Author(s):  
Marius Lindauer ◽  
Frank Hutter ◽  
Holger H. Hoos ◽  
Torsten Schaub

Algorithm selection (AS) techniques -- which involve choosing from a set of algorithms the one expected to solve a given problem instance most efficiently -- have substantially improved the state of the art in solving many prominent AI problems, such as SAT, CSP, ASP, MAXSAT and QBF. Although several AS procedures have been introduced, not too surprisingly, none of them dominates all others across all AS scenarios. Furthermore, these procedures have parameters whose optimal values vary across AS scenarios. In this extended abstract of our 2015 JAIR article of the same title, we summarize AutoFolio, which uses an algorithm configuration procedure to automatically select an AS approach and optimize its parameters for a given AS scenario. AutoFolio allows researchers and practitioners across a broad range of applications to exploit the combined power of many different AS methods and to automatically construct high-performance algorithm selectors. We demonstrate that AutoFolio was able to produce new state-of-the-art algorithm selectors for 7 well-studied AS scenarios and matches state-of-the-art performance statistically on all other scenarios. Compared to the best single algorithm for each AS scenario, AutoFolio achieved average speedup factors between 1.3 and 15.4.


2019 ◽  
Author(s):  
Onur Can Uner ◽  
Ramazan Gokberk Cinbis ◽  
Oznur Tastan ◽  
A. Ercument Cicek

AbstractDrug failures due to unforeseen adverse effects at clinical trials pose health risks for the participants and lead to substantial financial losses. Side effect prediction algorithms have the potential to guide the drug design process. LINCS L1000 dataset provides a vast resource of cell line gene expression data perturbed by different drugs and creates a knowledge base for context specific features. The state-of-the-art approach that aims at using context specific information relies on only the high-quality experiments in LINCS L1000 and discards a large portion of the experiments. In this study, our goal is to boost the prediction performance by utilizing this data to its full extent. We experiment with 5 deep learning architectures. We find that a multi-modal architecture produces the best predictive performance among multi-layer perceptron-based architectures when drug chemical structure (CS), and the full set of drug perturbed gene expression profiles (GEX) are used as modalities. Overall, we observe that the CS is more informative than the GEX. A convolutional neural network-based model that uses only SMILES string representation of the drugs achieves the best results and provides 13.0% macro-AUC and 3.1% micro-AUC improvements over the state-of-the-art. We also show that the model is able to predict side effect-drug pairs that are reported in the literature but was missing in the ground truth side effect dataset. DeepSide is available at http://github.com/OnurUner/DeepSide.


Author(s):  
Kuo-Liang Chung ◽  
Yu-Ling Tseng ◽  
Tzu-Hsien Chan ◽  
Ching-Sheng Wang

In this paper, we rst propose a fast and eective region-based depth map upsampling method, and then propose a joint upsampling and location map-free reversible data hiding method, simpled called the JUR method. In the proposed upsampling method, all the missing depth pixels are partitioned into three disjoint regions: the homogeneous, semi-homogeneous, and non- homogeneous regions. Then, we propose the depth copying, mean value, and bicubic interpolation approaches to reconstruct the three kinds of missing depth pixels quickly, respectively. In the proposed JUR method, without any location map overhead, using the neighboring ground truth depth pixels of each missing depth pixel, achieving substantial quality, and embedding capacity merits. The comprehensive experiments have been carried out to not only justify the execution-time and quality merits of the upsampled depth maps by our upsampling method relative to the state-of-the-art methods, but also justify the embedding capacity and quality merits of our JUR method when compared with the state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document