automated machine learning
Recently Published Documents


TOTAL DOCUMENTS

345
(FIVE YEARS 318)

H-INDEX

11
(FIVE YEARS 7)

2022 ◽  
Vol 54 (8) ◽  
pp. 1-36
Author(s):  
Shubhra Kanti Karmaker (“Santu”) ◽  
Md. Mahadi Hassan ◽  
Micah J. Smith ◽  
Lei Xu ◽  
Chengxiang Zhai ◽  
...  

As big data becomes ubiquitous across domains, and more and more stakeholders aspire to make the most of their data, demand for machine learning tools has spurred researchers to explore the possibilities of automated machine learning (AutoML). AutoML tools aim to make machine learning accessible for non-machine learning experts (domain experts), to improve the efficiency of machine learning, and to accelerate machine learning research. But although automation and efficiency are among AutoML’s main selling points, the process still requires human involvement at a number of vital steps, including understanding the attributes of domain-specific data, defining prediction problems, creating a suitable training dataset, and selecting a promising machine learning technique. These steps often require a prolonged back-and-forth that makes this process inefficient for domain experts and data scientists alike and keeps so-called AutoML systems from being truly automatic. In this review article, we introduce a new classification system for AutoML systems, using a seven-tiered schematic to distinguish these systems based on their level of autonomy. We begin by describing what an end-to-end machine learning pipeline actually looks like, and which subtasks of the machine learning pipeline have been automated so far. We highlight those subtasks that are still done manually—generally by a data scientist—and explain how this limits domain experts’ access to machine learning. Next, we introduce our novel level-based taxonomy for AutoML systems and define each level according to the scope of automation support provided. Finally, we lay out a roadmap for the future, pinpointing the research required to further automate the end-to-end machine learning pipeline and discussing important challenges that stand in the way of this ambitious goal.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012020
Author(s):  
Sohit Kummar ◽  
Asutosh Mohanty ◽  
Jyotsna ◽  
Sudeshna Chakraborty

Abstract Coronavirus (Covid-19) pandemic has impacted the whole world and has forced health emergencies internationally. The contact of this pandemic has been fallen over almost all the development sectors. A lot of precautionary measures have been taken to control the Covid-19 spread, where wearing a face mask is an essential precaution. Wearing a face mask correctly has been essential in controlling the Covid-19 transmission. Moreover, this research aims to detect the face mask with fine-grained wearing states: face with the correct mask and face without mask. Our work has two challenging tasks due to two main reasons firstly the presence of augmented data set available in the online market and the training of large datasets. This paper represents a mobile application for face mask detection. The fully automated Machine Learning Cloud service known as Google Cloud ML API is used for training the model in TensorFlow file format. This paper highlights the efficiency of the ML model. Additionally, this paper examines the advancement of the cloud technology used for machine learning over the traditional coding methods.


SoftwareX ◽  
2022 ◽  
Vol 17 ◽  
pp. 100919
Author(s):  
Moncef Garouani ◽  
Adeel Ahmad ◽  
Mourad Bouneffa ◽  
Mohamed Hamlich

2022 ◽  
Vol 31 (1) ◽  
pp. 255-277
Author(s):  
Jeongcheol Lee ◽  
Sunil Ahn ◽  
Hyunseob Kim ◽  
Jongsuk Ruth Lee

Author(s):  
Won Jung Lee ◽  
H. Shaun Kwak ◽  
Deuk-rak Lee ◽  
Chunrim Oh ◽  
Eul Kgun Yum ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 47-75
Author(s):  
Lidiia Melnyk

The research focuses on hate speech in the comments section of Ukrainian news websites. Restricted to solely COVID-19 related comments, it seeks to analyze the development of hate speech rates throughout the pandemic. Using a semi-automated machine-learning-aided approach, the paper identifies hate speech in the comments and defines its main targets. The research shows that a crisis like the COVID-19 pandemic can strengthen existing negative stereotypes and gives rise to new forms of stigmatization against social and ethnic groups.


2021 ◽  
Author(s):  
◽  
Benjamin Evans

<p>Ensemble learning is one of the most powerful extensions for improving upon individual machine learning models. Rather than a single model being used, several models are trained and the predictions combined to make a more informed decision. Such combinations will ideally overcome the shortcomings of any individual member of the ensemble. Most ma- chine learning competition winners feature an ensemble of some sort, and there is also sound theoretical proof to the performance of certain ensem- bling schemes. The benefits of ensembling are clear in both theory and practice.  Despite the great performance, ensemble learning is not a trivial task. One of the main difficulties is designing appropriate ensembles. For exam- ple, how large should an ensemble be? What members should be included in an ensemble? How should these members be weighted? Our first contribution addresses these concerns using a strongly-typed population- based search (genetic programming) to construct well-performing ensem- bles, where the entire ensemble (members, hyperparameters, structure) is automatically learnt. The proposed method was found, in general, to be significantly better than all base members and commonly used compari- son methods trialled.  With automatically designed ensembles, there is a range of applica- tions, such as competition entries, forecasting and state-of-the-art predic- tions. However, often these applications also require additional prepro- cessing of the input data. Above the ensemble considers only the original training data, however, in many machine learning scenarios a pipeline is required (for example performing feature selection before classification). For the second contribution, a novel automated machine learning method is proposed based on ensemble learning. This method uses a random population-based search of appropriate tree structures, and as such is em- barrassingly parallel, an important consideration for automated machine learning. The proposed method is able to achieve equivalent or improved results over the current state-of-the-art methods and does so in a fraction of the time (six times as fast).  Finally, while complex ensembles offer great performance, one large limitation is the interpretability of such ensembles. For example, why does a forest of 500 trees predict a particular class for a given instance? In an effort to explain the behaviour of complex models (such as ensem- bles), several methods have been proposed. However, these approaches tend to suffer at least one of the following limitations: overly complex in the representation, local in their application, limited to particular fea- ture types (i.e. categorical only), or limited to particular algorithms. For our third contribution, a novel model agnostic method for interpreting complex black-box machine learning models is proposed. The method is based on strongly-typed genetic programming and overcomes the afore- mentioned limitations. Multi-objective optimisation is used to generate a Pareto frontier of simple and explainable models which approximate the behaviour of much more complex methods. We found the resulting rep- resentations are far simpler than existing approaches (an important con- sideration for interpretability) while providing equivalent reconstruction performance.  Overall, this thesis addresses two of the major limitations of existing ensemble learning, i.e. the complex construction process and the black- box models that are often difficult to interpret. A novel application of ensemble learning in the field of automated machine learning is also pro- posed. All three methods have shown at least equivalent or improved performance than existing methods.</p>


Sign in / Sign up

Export Citation Format

Share Document