The generalized Klein–Gordon oscillator with Coulomb-type potential in (1+2)-dimensions Gürses space–time

2019 ◽  
Vol 51 (5) ◽  
Author(s):  
Faizuddin Ahmed
Author(s):  
Ricardo L. L. Vitória

Abstract We investigate rotating effects on a charged scalar field immersed in spacetime with a magnetic screw dislocation. In addition to the hard-wall potential, which we impose to satisfy a boundary condition from the rotating effect, we insert a Coulomb-type potential and the Klein–Gordon oscillator into this system, where, analytically, we obtain solutions of bound states which are influenced not only by the spacetime topology, but also by the rotating effects, as a Sagnac-type effect modified by the presence of the magnetic screw dislocation.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Faizuddin Ahmed

In this paper, we solve a generalized Klein-Gordon oscillator in the cosmic string space-time with a scalar potential of Cornell-type within the Kaluza-Klein theory and obtain the relativistic energy eigenvalues and eigenfunctions. We extend this analysis by replacing the Cornell-type with Coulomb-type potential in the magnetic cosmic string space-time and analyze a relativistic analogue of the Aharonov-Bohm effect for bound states.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Faizuddin Ahmed

In this paper, we investigate the relativistic quantum dynamics of spin-0 massive charged particle subject to a homogeneous magnetic field in the Gödel-type space-time with potentials. We solve the Klein-Gordon equation subject to a homogeneous magnetic field in a topologically trivial flat class of Gödel-type space-time in the presence of Cornell-type scalar and Coulomb-type vector potentials and analyze the effects on the energy eigenvalues and eigenfunctions.


2021 ◽  
Author(s):  
Faizuddin Ahmed

Abstract In this work, we solve a generalized KG-oscillator subject to a scalar and vector potential of Coulomb-types under the effects of a uniform rotation in cosmic string space-time. We obtain the energy eigenvalue and eigenfunction, and analyze a relativistic analogue of the Aharonov-Bohm effect for bound states. We see that the presence of potential allow the formation of bound states solution and the energy level and wave-function for each radial mode depend on the global parameters of the space-time.


Sign in / Sign up

Export Citation Format

Share Document