eigenvalue and eigenfunction
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 0)

Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 184
Author(s):  
Alexander O. Spiridonov ◽  
Anna I. Repina ◽  
Ilya V. Ketov ◽  
Sergey I. Solov’ev ◽  
Evgenii M. Karchevskii

The paper investigates an algorithm for the numerical solution of a parametric eigenvalue problem for the Helmholtz equation on the plane specially tailored for the accurate mathematical modeling of lasing modes of microring lasers. The original problem is reduced to a nonlinear eigenvalue problem for a system of Muller boundary integral equations. For the numerical solution of the obtained problem, we use a trigonometric Galerkin method, prove its convergence, and derive error estimates in the eigenvalue and eigenfunction approximation. Previous numerical experiments have shown that the method converges exponentially. In the current paper, we prove that if the generalized eigenfunctions are analytic, then the approximate eigenvalues and eigenfunctions exponentially converge to the exact ones as the number of basis functions increases. To demonstrate the practical effectiveness of the algorithm, we find geometrical characteristics of microring lasers that provide a significant increase in the directivity of lasing emission, while maintaining low lasing thresholds.


2021 ◽  
Author(s):  
Faizuddin Ahmed

Abstract In this work, we solve a generalized KG-oscillator subject to a scalar and vector potential of Coulomb-types under the effects of a uniform rotation in cosmic string space-time. We obtain the energy eigenvalue and eigenfunction, and analyze a relativistic analogue of the Aharonov-Bohm effect for bound states. We see that the presence of potential allow the formation of bound states solution and the energy level and wave-function for each radial mode depend on the global parameters of the space-time.


Author(s):  
Faizuddin Ahmed

In this paper, we solve KG-oscillator in the five-dimensional cosmic string space-time background with a uniform magnetic field and quantum flux subject to a scalar potential of Cornell-type using KaluzaKlein theory, and observe the gravitational analogue of the AharonovBohm effect. We show that the energy eigenvalue and eigenfunction depends on the global parameters of the space-time, and also a quantum effect is seen due to the dependence of magnetic field on the quantum numbers of the system


Author(s):  
Faizuddin Ahmed

The non-inertial effects on spin-0 scalar particle that interacts with scalar potentials of Cornell-type in cylindrical system and Coulomb-type in the magnetic cosmic string space-time using Kaluza-Klein theory is analyzed. We show that the energy eigenvalue and eigenfunction depend on the global parameters characterizing the space-time, and the gravitational analogue of the Aharonov-Bohm effect for bound states is observed.


Author(s):  
Dedy A Bilaut ◽  
C Cari ◽  
A Suparmi ◽  
Miftahul Ma’arif

<p class="AbstractEnglish"><strong>Abstract:</strong> The analytical solution of the Schrodinger equation affected by Kratzer potential in Bispherical coordinate system was derived. The separable method was applied to reducing the Schrodinger equation which depends on  into three one-dimensional Schrodinger equations. The Schrodinger equations as the function of  with and without -deformed were solved using the SUSY QM method. The solutions were eigenvalue and eigenfunction of -deformed Schrodinger equation and eigenvalue end eigenfunction of Schrodinger equation with and without q-deformed in Bispherical coordinate system. The energy of the Schrodinger equation with -deformed equals to the Energy of Schrodinger without -deformed since the  parameter becomes to zero.</p><p class="AbstrakIndonesia"><strong>Abstrak:</strong> Solusi analitik dari Persamaan Schrodinger yang dipengaruhi Potensial Kratzer dalam koordinat Bispherical telah berhasil diturunkan. Metode pemisahan variabel digunakan untuk mereduksi persamaan Schrodinger yang bergantung pada  menjadi tiga persamaan Schrodinger satu dimensi. Persamaan Schrodinger fungsi  terdeformasi- dan tidak terdeformasi- diselesaikan menggunakan metode SUSY QM. Solusi yang berhasil didapatkan adalah nilai eigen dan fungsi eigen persamaan Schrodinger, masing-masing untuk sistem terdeformasi- dan yang tidak terdeformasi- dalam koordinat Bispherical. Energi dari persamaan Schrodinger terdeformasi- sama dengan energi dari persamaan Schrodinger yang tidak terdeformasi- ketika  sama dengan nol.</p>


2016 ◽  
Vol 9 (1) ◽  
pp. 92-103 ◽  
Author(s):  
Xia Ji ◽  
Yingxia Xi ◽  
Hehu Xie

AbstractIn this paper, we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions. The error estimates of the eigenvalue and eigenfunction approximation are given, respectively. Finally, some numerical examples are provided to validate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document