Robust Adaptive Backstepping Global Fast Dynamic Terminal Sliding Mode Controller Design for Quadrotors

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Umut Tilki ◽  
Ali Can Erüst
2020 ◽  
Vol 17 (3) ◽  
pp. 172988142091698 ◽  
Author(s):  
Pengcheng Wang ◽  
Dengfeng Zhang ◽  
Baochun Lu

This article investigates a difficult problem which focuses on the external disturbance and dynamic uncertainty in the process of trajectory tracking. This article presents a robust adaptive fuzzy terminal sliding mode controller with low-pass filter. The low-pass filter can provide smooth position and speed signals. The fuzzy terminal sliding mode controller can achieve fast convergence and desirable tracking precision. Chattering is eliminated with continuous control law, due to high-frequency switching terms contained in the first derivative of actual control signals. Ignoring the prior knowledge upper bound, the controller can reduce the influence of the uncertain kinematics and dynamics in the actual situation. Finally, the experiment is carried out and the results show the performance of the proposed controller.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401877863 ◽  
Author(s):  
Ran Jiao ◽  
Wusheng Chou ◽  
Rui Ding ◽  
Mingjie Dong

The control of quadrotor equipped with a robotic arm has received growing challenges. This article proposes a new adaptive control strategy of quadrotor equipped with a 2-degree-of-freedom robotic arm. To consider the positional variety of the center of gravity caused by the motion of the robotic arm, the kinematic and dynamic models are built. Based on the presented models, a backstepping and sliding mode controller with a terminal sliding mode manifold is first applied to cope with the condition in which the robotic arm is motionless relative to the quadrotor. As the evolvement of the backstepping and sliding mode controller, a novel adaptive backstepping and sliding mode controller is then designed for the vehicle with the robotic arm wavering. The robustness and effectiveness of the proposed control law are investigated through both simulations and flight tests. With the proposed control laws, several simulations are conducted in conditions of both a variable and a constant center of gravity, and the performance of hovering is tested with a variable center of gravity in an experiment. Overall results show that the proposed adaptive backstepping control could estimate and compensate the variable center of gravity which may seriously influence the stabilization of quadrotor flying in the air.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Juntao Fei ◽  
Zhe Wang ◽  
Xiao Liang

In this paper, a robust adaptive fractional fast terminal sliding mode controller is introduced into the microgyroscope for accurate trajectory tracking control. A new fast terminal switching manifold is defined to ensure fast finite convergence of the system states, where a fractional-order differentiation term emerges into terminal sliding surface, which additionally generates an extra degree of freedom and leads to better performance. Adaptive algorithm is applied to estimate the damping and stiffness coefficients, angular velocity, and the upper bound of the lumped nonlinearities. Numerical simulations are presented to exhibit the validity of the proposed method, and the comparison with the other two methods illustrates its superiority.


Sign in / Sign up

Export Citation Format

Share Document