variable center
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 2)

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2807
Author(s):  
Wentao Ma ◽  
Panfei Cai ◽  
Fengyuan Sun ◽  
Xiao Kou ◽  
Xiaofei Wang ◽  
...  

Classical adaptive filtering algorithms with a diffusion strategy under the mean square error (MSE) criterion can face difficulties in distributed estimation (DE) over networks in a complex noise environment, such as non-zero mean non-Gaussian noise, with the object of ensuring a robust performance. In order to overcome such limitations, this paper proposes a novel robust diffusion adaptive filtering algorithm, which is developed by using a variable center generalized maximum Correntropy criterion (GMCC-VC). Generalized Correntropy with a variable center is first defined by introducing a non-zero center to the original generalized Correntropy, which can be used as robust cost function, called GMCC-VC, for adaptive filtering algorithms. In order to improve the robustness of the traditional MSE-based DE algorithms, the GMCC-VC is used in a diffusion adaptive filter to design a novel robust DE method with the adapt-then-combine strategy. This can achieve outstanding steady-state performance under non-Gaussian noise environments because the GMCC-VC can match the distribution of the noise with that of non-zero mean non-Gaussian noise. The simulation results for distributed estimation under non-zero mean non-Gaussian noise cases demonstrate that the proposed diffusion GMCC-VC approach produces a more robustness and stable performance than some other comparable DE methods.


2021 ◽  
pp. 108364
Author(s):  
Xiang Liu ◽  
Chengtian Song ◽  
Zhihua Pang
Keyword(s):  

2021 ◽  
Author(s):  
David Moss

We demonstrate an RF photonic fractional Hilbert transformer based on an integrated Kerr micro-comb source featuring a record low free spectral range of 49 GHz. By programming and shaping the comb lines according to calculated tap weights for up to 39 wavelengths across the C-band, we achieve tunable bandwidths ranging from 1.2 to 15.3 GHz as well as variable center frequencies from baseband to 9.5 GHz, for both standard integral and arbitrary fractional orders. We experimentally characterize the RF amplitude and phase response of the tunable bandpass and lowpass Hilbert transformers with 90 and 45-degree phase shifts. The experimental results show good agreement with theory, confirming the effectiveness of our approach as a powerful way to implement standard and fractional order Hilbert transformers with broad and variable bandwidths and center frequencies, with high reconfigurability and greatly reduced size and complexity.


2021 ◽  
Author(s):  
Mengxi Tan ◽  
Xingyuan Xu ◽  
David Moss

Abstract We demonstrate an RF photonic fractional Hilbert transformer based on an integrated Kerr micro-comb source featuring a record low free spectral range of 49 GHz. By programming and shaping the comb lines according to calculated tap weights for up to 39 wavelengths across the C-band, we achieve tunable bandwidths ranging from 1.2 to 15.3 GHz as well as variable center frequencies from baseband to 9.5 GHz, for both standard integral and arbitrary fractional orders. We experimentally characterize the RF amplitude and phase response of the tunable bandpass and lowpass Hilbert transformers with 90 and 45-degree phase shifts. The experimental results show good agreement with theory, confirming the effectiveness of our approach as a powerful way to implement standard and fractional order Hilbert transformers with broad and variable bandwidths and center frequencies, with high reconfigurability and greatly reduced size and complexity.


2021 ◽  
Author(s):  
David Moss

<p>We demonstrate an RF photonic fractional Hilbert transformer based on an integrated Kerr micro-comb source featuring a record low free spectral range of 49 GHz. By programming and shaping the comb lines according to calculated tap weights for up to 39 wavelengths across the C-band, we achieve tunable bandwidths ranging from 1.2 to 15.3 GHz as well as variable center frequencies from baseband to 9.5 GHz, for both standard integral and arbitrary fractional orders. We experimentally characterize the RF amplitude and phase response of the tunable bandpass and lowpass Hilbert transformers with 90 and 45-degree phase shifts. The experimental results show good agreement with theory, confirming the effectiveness of our approach as a powerful way to implement standard and fractional order Hilbert transformers with broad and variable bandwidths and center frequencies, with high reconfigurability and greatly reduced size and complexity.</p>


2021 ◽  
Author(s):  
David Moss

<p>We demonstrate an RF photonic fractional Hilbert transformer based on an integrated Kerr micro-comb source featuring a record low free spectral range of 49 GHz. By programming and shaping the comb lines according to calculated tap weights for up to 39 wavelengths across the C-band, we achieve tunable bandwidths ranging from 1.2 to 15.3 GHz as well as variable center frequencies from baseband to 9.5 GHz, for both standard integral and arbitrary fractional orders. We experimentally characterize the RF amplitude and phase response of the tunable bandpass and lowpass Hilbert transformers with 90 and 45-degree phase shifts. The experimental results show good agreement with theory, confirming the effectiveness of our approach as a powerful way to implement standard and fractional order Hilbert transformers with broad and variable bandwidths and center frequencies, with high reconfigurability and greatly reduced size and complexity.</p>


Author(s):  
Mengxi Tan ◽  
Xingyuan Xu ◽  
David Moss

We demonstrate an RF photonic fractional Hilbert transformer based on an integrated Kerr micro-comb source featuring a record low free spectral range of 49 GHz. By programming and shaping the comb lines according to calculated tap weights for up to 39 wavelengths across the C-band, we achieve tunable bandwidths ranging from 1.2 to 15.3 GHz as well as variable center frequencies from baseband to 9.5 GHz, for both standard integral and arbitrary fractional orders. We experimentally characterize the RF amplitude and phase response of the tunable bandpass and lowpass Hilbert transformers with 90 and 45-degree phase shifts. The experimental results show good agreement with theory, confirming the effectiveness of our approach as a powerful way to implement standard and fractional order Hilbert transformers with broad and variable bandwidths and center frequencies, with high reconfigurability and greatly reduced size and complexity. Tan, and D. J. Moss are with the Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia. (Corresponding e-mail: [email protected]). Xu is with the Electro-Photonics Laboratory, Department of Electrical and Computer System Engineering, Monash University, Clayton, 3800 VIC, Australia


2021 ◽  
Vol 304 ◽  
pp. 02010
Author(s):  
Abdusalam Abdukarimov ◽  
Sanjarbek Madaminov ◽  
Asrorbek Abdullajonov

This article deals with the synthesis of a ten-link tooth-lever differential transmission mechanism. The article contains an analytical review of modern scientific research on the synthesis of tooth-lever differential transmission mechanisms of roller machines with a variable center distance of the working shafts; a method for the synthesis of toothlever differential transmission mechanisms of roller machines with a variable center distance of the working shafts described on the example of a ten-link tooth-lever differential transmission mechanism; the conditions for the synthesis of the mechanism given and substantiated when this mechanism is used in a roller machine; one of its working shafts has the ability to rotate about its own axis, and the second working shaft, in addition to rotation about its own axis, has the ability to move relative to the first working shaft along a line passing through the center the axes of rotation of both working shafts; the geometric synthesis of the tooth and lever contours of the mechanism, the dynamic synthesis of the mechanism, taking into account the angles of pressure between the lever link of the lever contour of the mechanism, which allows us to determine the optimal working position of the mechanism where the angles of pressure are within acceptable limits; the graphs of changes in the angles of pressure between the links of the lever contour of the mechanism, plotted depending on its position.


2021 ◽  
Vol 2021.74 (0) ◽  
pp. E11
Author(s):  
Sho OGAWA ◽  
Aoi SAKATA ◽  
Ryota KUNIMATSU ◽  
Kento HIGASHI ◽  
Makoto IWAMURA

Sign in / Sign up

Export Citation Format

Share Document