High temperature CSS processed CdTe solar cells on commercial SnO2:F/SnO2 coated soda-lime glass substrates

2015 ◽  
Vol 26 (7) ◽  
pp. 4708-4715 ◽  
Author(s):  
Naba R. Paudel ◽  
Corey R. Grice ◽  
Chuanxiao Xiao ◽  
Yanfa Yan
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Peng-cheng Huang ◽  
Chia-ho Huang ◽  
Mao-yong Lin ◽  
Chia-ying Chou ◽  
Chun-yao Hsu ◽  
...  

Molybdenum (Mo) thin films are widely used as a back contact for CIGS-based solar cells. This paper determines the optimal settings for the sputtering parameters for an Mo thin film prepared on soda lime glass substrates, using direct current (dc) magnetron sputtering, with a metal Mo target, in an argon gas environment. A Taguchi method with an L9orthogonal array, the signal-to-noise ratio, and an analysis of variances is used to determine the performance characteristics of the coating operation. The main sputtering parameters, such as working pressure (mTorr), dc power (W), and substrate temperature (°C), are optimized with respect to the structural features, surface morphology, and electrical properties of the Mo films. An adhesive tape test is performed on each film to determine the adhesion strength of the films. The experimental results show that the working pressure has the dominant effect on electrical resistivity and reflectance. The intensity of the main peak (110) for the Mo film increases and the full width at half maximum decreases gradually as the sputtering power is increased. Additionally, the application of an Mo bilayer demonstrates good adherence and low resistivity.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Weimin Li ◽  
Xia Yan ◽  
Armin G. Aberle ◽  
Selvaraj Venkataraj

Molybdenum (Mo) thin films are widely used as rear electrodes in copper indium gallium diselenide (CIGS) solar cells. The challenge in Mo deposition by magnetron sputtering lies in simultaneously achieving good adhesion to the substrates while retaining the electrical and optical properties. Bilayer Mo films, comprising five different thickness ratios of a high pressure (HP) deposited bottom layer and a low pressure (LP) deposited top layer, were deposited on 40 cm × 30 cm soda-lime glass substrates by DC magnetron sputtering. We focus on understanding the effects of the individual layer properties on the resulting bilayer Mo films, such as microstructure, surface morphology, and surface oxidation. We show that the thickness of the bottom HP Mo layer plays a major role in determining the micromechanical and physical properties of the bilayer Mo stack. Our studies reveal that a thicker HP Mo bottom layer not only improves the adhesion of the bilayer Mo, but also helps to improve the film crystallinity along the preferred [110] direction. However, the surface roughness and the porosity of the bilayer Mo films are found to increase with increasing bottom layer thickness, which leads to lower optical reflectance and a higher probability for oxidation at the Mo surface.


2013 ◽  
Vol 119 ◽  
pp. 163-168 ◽  
Author(s):  
Shigenori Furue ◽  
Shogo Ishizuka ◽  
Akimasa Yamada ◽  
Masayuki Iioka ◽  
Hirofumi Higuchi ◽  
...  

1996 ◽  
Vol 69 (20) ◽  
pp. 3045-3047 ◽  
Author(s):  
M. Shao ◽  
A. Fischer ◽  
D. Grecu ◽  
U. Jayamaha ◽  
E. Bykov ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1699
Author(s):  
Dipendra Adhikari ◽  
Maxwell M. Junda ◽  
Corey R. Grice ◽  
Sylvain X. Marsillac ◽  
Robert W. Collins ◽  
...  

Nanocrystalline hydrogenated silicon (nc-Si:H) substrate configuration n-i-p solar cells have been fabricated on soda lime glass substrates with active absorber layers prepared by plasma enhanced chemical vapor deposition (PECVD) and radio frequency magnetron sputtering. The cells with nanocrystalline PECVD absorbers and an untextured back reflector serve as a baseline for comparison and have power conversion efficiency near 6%. By comparison, cells with sputtered absorbers achieved efficiencies of about 1%. Simulations of external quantum efficiency (EQE) are compared to experimental EQE to determine a carrier collection probability gradient with depth for the device with the sputtered i-layer absorber. This incomplete collection of carriers generated in the absorber is most pronounced in material near the n/i interface and is attributed to breaking vacuum between deposition of layers for the sputtered absorbers, possible low electronic quality of the nc-Si:H sputtered absorber, and damage at the n/i interface by over-deposition of the sputtered i-layer during device fabrication.


1997 ◽  
Vol 471 ◽  
Author(s):  
Dawne M. Moffatt-Fairbanks ◽  
David L. Tennent

ABSTRACTThe glass substrate plays a crucial role in the successful performance of advanced flat panel displays (FPDs). These FPD technologies include active-matrix liquid crystal displays (AMLCD) and Plasma Displays (PDP). Although these displays are different in the way in which they operate, there are several common substrate requirements, all of which are determined by the process for making the entire display. These include issues relating to substrate size, thermal shrinkage, high temperature stability, and substrate surface quality.While AMLCD technology is moving toward larger sizes, PDPs are currently large size displays, requiring large glass substrates. The primary issue in using larger substrates is minimizing distortion of the glass during high temperature processes, both viscous sag and shrinkage. These are related to the high temperature thermal stability which, in turn, is largely determined by the strain point and thermal history of the substrate. Finally, thickness uniformity and surface flaws are critical to the performance of the final display.Coming's Code 1737 glass substrate meets the requirements for AMLCDs and has become the industry standard. Corning/Saint-Gobain Code CS25 glass is a new glass that has significant benefits over soda-lime glass for PDP applications. This paper will discuss these two glasses in terms of the above-mentioned issues.


2012 ◽  
Vol 27 (11) ◽  
pp. 115020 ◽  
Author(s):  
Chia-Hua Huang ◽  
Hung-Lung Cheng ◽  
Wei-En Chang ◽  
Ming Yi Huang ◽  
Yi-Jiunn Chien

2001 ◽  
Vol 668 ◽  
Author(s):  
A. Romeo ◽  
D.L. Bätzner ◽  
H. Zogg ◽  
A.N. Tiwari

ABSTRACTCdTe/CdS solar cells of ∼10% efficiency, developed with a vacuum deposition method were irradiated with high-energy protons of different fluences. The Voc and f.f. of irradiated cells increase or decrease depending on the fluence. The normal soda lime glass substrate darkens under the irradiation; therefore low Isc is measured. Measurements suggest that CdTe solar cells are highly stable under proton flux. Flexible and lightweight solar cells were developed in a superstrate configuration on polymer substrates. 8.6 % efficiency cells with Voc∼770 mV and Isc of 20.3 mA/cm2 were achieved.


Sign in / Sign up

Export Citation Format

Share Document