radio frequency
Recently Published Documents


TOTAL DOCUMENTS

20074
(FIVE YEARS 3257)

H-INDEX

144
(FIVE YEARS 15)

2022 ◽  
Author(s):  
Nikita Dmitriev ◽  
Sergey Koptyaev ◽  
Andrey Voloshin ◽  
Nikita Kondratiev ◽  
Valery Lobanov ◽  
...  

Abstract Dual-comb interferometry is based on self-heterodyning two optical frequency combs, with corresponding mapping of the optical spectrum into the radio-frequency domain. The dual-comb enables diverse applications, including metrology, fast high-precision spectroscopy with high signal-to-noise ratio, distance ranging, and coherent optical communications. However, current dual-frequency-comb systems are designed for research applications and typically rely on scientific equipment and bulky mode-locked lasers. Here we demonstrate for the first time a fully integrated power-efficient dual-microcomb source that is electrically driven and allows turnkey operation. Our implementation uses commercially available components, including distributed-feedback and Fabry--Perot laser diodes, and silicon nitride photonic circuits with microresonators fabricated in commercial multi-project wafer runs. Our devices are therefore unique in terms of size, weight, power consumption, and cost. Laser-diode self-injection locking relaxes the requirements on microresonator spectral purity and Q-factor, so that we can generate soliton microcombs resilient to thermal frequency drift and with pump-to-comb sideband efficiency of up to 40% at mW power levels. We demonstrate down-conversion of the optical spectrum from 1400 nm to 1700 nm into the radio-frequency domain, which is valuable for fast wide-band Fourier spectroscopy, which was previously not available with chip-scale devices. Our findings pave the way for further integration of miniature microcomb-based sensors and devices for high-volume applications, thus opening up the prospect of innovative products that redefine the market of industrial and consumer mobile and wearable devices and sensors.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 612
Author(s):  
Răzvan-George Bărtuşică ◽  
Mădălin Mihai ◽  
Simona Halunga ◽  
Octavian Fratu

This paper presents a technical solution that addresses mission-critical communications by extending the radio frequency coverage area using a flexible and scalable architecture. One of the main objectives is to improve both the reaction time and the coordination between mission-critical practitioners, also called public protection and disaster relief users, that operate in emergency scenarios. Mission-critical services such as voice and data should benefit from reliable communication systems that offer high availability, prioritization and flexible architecture. In this paper, we considered Terrestrial Trunked Radio (TETRA), the mobile radio standard used for mission-critical communications, as it has been designed in this respect and is widely used by first responder organizations. Even if RF coverage is designed before network deployment and continuously updated during the lifetime of the technology, some white areas may exist and should be covered by supplementary base stations or repeaters. The model presented in this paper is an optical repeater for TETRA standard that can offer up to 52.6 dB downlink, 65.6 dB uplink gain and up to 3.71 km coverage distance in a radiating cable installation scenario. The design in not limited, as it can be extended to several different mobile radio standards using the same principle. Flexibility and scalability attributes are taken into consideration, as they can build a cost-effective deployment considering both capital and operational expenditures.


2022 ◽  
Author(s):  
Dharmender Nishad ◽  
Kaushal Nigam ◽  
Satyendra Kumar

Abstract Temperature dependence performance variation is one of the major concerns in predicting the actual electrical characteristics of the device as the bandgap of semiconducting material varies with temperature. Therefore, in this article, for the first time, the impact of temperature variations ranging from 300K to 450K on the DC, analog/ radio frequency, and linearity performance of dual material stack gate oxide-source dielectric pocket-tunnel- field-effect transistor (DMSGO-SDP-TFET) is investigated. In this regard, technology computer-aided design (TCAD) simulator is used to analyze DC, and analog/radio frequency performance parameters such as carrier concentration, energy band variation, band to band tunneling rate, IDS - VGS characteristics, transconductance (gm), cut o frequency (f T ),gain-bandwidth product (GBP), maximum oscillating frequency (fmax), transconductance frequency product (TFP), and transit time considering the impact of temperature variations. Furthermore, linearity parameters such as third-order transconductance (gm3), third-order voltage intercept point (VIP3), third-order input-interception point (IIP3), and intermodulation distortion (IMD3) are also analyzed with temperature variations as these performance parameters are significant for linear and analog/radio frequency applications. Moreover, the performance of the proposed DMSGO- SDP-TFET is compared with the conventional dual-material stack gate oxide-tunnel- field-effect transistor (DMSGO-TFET). From the comparative analysis, in terms of % per kelvin, DMSGO-SDP-TFET demonstrates lesser sensitivity towards temperature variation. Hence, the proposed DMSGO-SDP-TFET can be a suitable candidate for low power switching and analog/radio frequency applications at elevated temperatures as compared to conventional DMSGO-TFET.


Author(s):  
Qing-Yu Wang ◽  
Cun Xue ◽  
Chao Dong ◽  
You-He Zhou

Abstract The vortex penetration and vortex dynamics are significantly important to superconducting devices, for example the superconducting cavities, since the vortex motions would create substantial dissipation. In experiments, different kinds of defects, as well as different degrees of surface roughness were observed. By considering these in superconductor-insulator-superconductor (SIS) structures, the vortex penetration and vortex dynamics are very complex due to the interactions with defects and the influence of surface roughness, especially for radio-frequency (RF) magnetic field, which are quite different from ideal defect-free SIS multilayer structures. In this paper, within Ginzburg-Landau theory, we perform numerical simulations to study the effects of nanoscale defects, surface roughness, and cracks in the coating layer on the vortex penetration and superheating field in Nb3Sn-I-Nb multilayer structures exposed to a quasi-static magnetic field. The validations of the numerical simulations are verified by good consistency with previous theoretical results in ideal defect-free SIS multilayer and single Nb structures. Furthermore, we explore the vortex dynamics and induced voltages in SIS multilayer structures exposed to RF magnetic fields for both ideal defect-free structures and real situations including surface roughness. Our numerical simulations indicate that, unlike the quasi-static case, the advantage of SIS multilayer structures over a single Nb structure depends on the degrees of surface roughness as well as the frequency and amplitude of the RF magnetic field. The results of this paper provide deep insight to evaluate the actual performance-limiting of next-generation superconducting radio-frequency (SRF) cavities with different proposed candidate materials, which are quite susceptible to nonideal surface.


2022 ◽  
Author(s):  
Anu Jagannath ◽  
Jithin Jagannath ◽  
Prem Sagar Pattanshetty Vasanth Kumar

Fifth generation (5G) networks and beyond envisions massive Internet of Things (IoT) rollout to support disruptive applications such as extended reality (XR), augmented/virtual reality (AR/VR), industrial automation, autonomous driving, and smart everything which brings together massive and diverse IoT devices occupying the radio frequency (RF) spectrum. Along with spectrum crunch and throughput challenges, such a massive scale of wireless devices exposes unprecedented threat surfaces. RF fingerprinting is heralded as a candidate technology that can be combined with cryptographic and zero-trust security measures to ensure data privacy, confidentiality, and integrity in wireless networks. Motivated by the relevance of this subject in the future communication networks, in this work, we present a comprehensive survey of RF fingerprinting approaches ranging from a traditional view to the most recent deep learning (DL) based algorithms. Existing surveys have mostly focused on a constrained presentation of the wireless fingerprinting approaches, however, many aspects remain untold. In this work, however, we mitigate this by addressing every aspect - background on signal intelligence (SIGINT), applications, relevant DL algorithms, systematic literature review of RF fingerprinting techniques spanning the past two decades, discussion on datasets, and potential research avenues - necessary to elucidate this topic to the reader in an encyclopedic manner.


Sign in / Sign up

Export Citation Format

Share Document